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INTRODUCTION 

Most people would agree that a major goal of schooling should be the development of 

students’ understanding of basic mathematical concepts and procedures. All students, including 

those with disabilities and those at risk of school failure, need to acquire the knowledge and 

skills that will enable them to “figure out” math-related problems that they encounter daily at 

home and in future work situations. Unfortunately, there is considerable evidence to indicate that 

this objective is not being met, especially for children exhibiting learning difficulties. Since the 

first discouraging results of mathematics achievement reported by the National Assessment of 

Educational Progress (NAEP) in 1973, there has been little evidence to suggest that mathematics 

achievement has improved significantly, especially for students with disabilities. 

According to the NAEP, the majority of elementary and middle school students are not 

proficient in math. Only 32% of fourth graders and 29% of eighth graders scored at or above the 

proficient level in math, and unfortunately this is an improvement over previous years (National 

Center for Education Statistics [NCES], 2003). Students performing at the lowest level on the 

NAEP assessment are still not achieving the most basic level of math skills, and the gap between 

low and higher performers persists (NCES, 2003). This gap increases with each year as students 

with disabilities continue to fall further behind their peers (Cawley, Parmar, Yan, & Miller, 

1998). For schools to close this achievement gap and meet the federal guidelines set forth by the 

No Child Left Behind (NCLB) Act, they must see that all students achieve academic proficiency. 

Technology-based innovations can form the basis of effective approaches to help students who 

have difficulty with math strive to achieve parity with their peers. 

In this paper, we have adopted the term “math difficulty” to include terms frequently 

used to identify students who have difficulty with mathematics. We have established this term in 

order to review literature that addresses math achievement for various groups such as students at 

risk or disadvantage, with dyscalculia, learning disabilities, and so on in order to see a more 

complete picture of how students struggle with mathematical knowledge and learning. 

MATHEMATICAL KNOWLEDGE AND LEARNING 

To better understand how to enhance mathematical thinking and learning in today’s 

students, especially students with math difficulty, we must first understand the nature of 
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mathematical knowledge. Mathematicians and cognitive scientists appear to agree that at least 

three basic types of mathematical knowledge exist and are required for the development of 

mathematical literacy and competence. These three types of knowledge are declarative, 

procedural, and conceptual. A brief overview of these knowledge types is provided below. For a 

more detailed discussion of this framework, please see Goldman and Hasselbring (1997). 

Declarative knowledge can be considered factual knowledge about mathematics. 

Examples of this type of knowledge are 4 + 7 = 11 or the definition of a square as a four-sided 

polygon having equal-length sides meeting at right angles. Declarative knowledge serves as the 

building blocks for procedural knowledge. Procedural knowledge can be defined as the rules, 

algorithms, or procedures used to solve mathematical tasks. For example, the order of operations 

is a rule for simplifying expressions that have more than one operation. In contrast, conceptual 

knowledge goes beyond mere knowledge of discrete facts and procedural steps to a full 

understanding of interrelated pieces of information. It can be thought of as a connected web of 

information in which the linking relationships are as important as the pieces of discrete 

information that are linked. For example, procedural knowledge that is linked to conceptual 

knowledge can help students select the appropriate mathematical operation to use in a particular 

situation, because the conceptual knowledge helps them understand the underlying reasons for 

selecting that operation. Mathematical competency requires the development of an interactive 

relationship between declarative, procedural, and conceptual knowledge. The development of 

relationships between these knowledge types is critical for knowledge to be accessible and 

usable.  

A variety of technologies are available to enhance students’ mathematical competency by 

building their declarative, procedural, and conceptual knowledge. The remainder of this paper 

will review these technologies. This review will be guided by the NCTI Mathematics Matrix 

found at http://www.citeducation.org/mathmatrix. The matrix identifies six purposes of 

technology use for supporting student mathematical learning, including (1) building 

computational fluency; (2) converting symbols, notations, and text; (3) building conceptual 

understanding; (4) making calculations and creating mathematical representations; (5) organizing 

ideas; and (6) building problem solving and reasoning. These six purposes support the 

development of students' declarative, procedural, and conceptual knowledge. Declarative 

knowledge is developed through technologies that help build computational fluency. Challenges 
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with procedural knowledge are surmounted with the assistance of technologies that help with 

converting mathematical symbols and notations, calculating mathematical operations, and 

inputting/organizing data. Finally, conceptual knowledge is enhanced by technologies designed 

to build conceptual understanding, problem solving, and reasoning. Research on the use of these 

different purposes of technologies is reviewed in the next sections.  

Building Computational Fluency 

The research on computational fluency suggests that the ability to fluently recall the 

answers to basic math facts is a necessary condition for attaining higher-order math skills. The 

rationale for this thinking is that all human beings have a limited information-processing 

capacity. That is, an individual simply cannot attend to too many things at once. Grover 

Whitehurst, the Director of the Institute for Educational Sciences (IES), noted this research 

during the launch of the federal Math Summit (2003):  

Cognitive psychologists have discovered that humans have fixed limits on the attention 

and memory that can be used to solve problems. One way around these limits is to have 

certain components of a task become so routine and over-learned that they become 

automatic.  

The implication for mathematics is that some of the sub-processes, particularly basic facts, need 

to be developed to the point that they are done fluently and automatically. If this fluent retrieval 

does not develop, then the development of higher-order mathematics skills—such as multiple-

digit addition and subtraction, long division, and fractions—may be severely impaired (Resnick, 

1983). Indeed, studies have found that lack of math fact retrieval can impede participation in 

math class discussions (Woodward & Baxter, 1997), successful mathematics problem-solving 

(Pellegrino & Goldman, 1987), and even the development of everyday life skills (Loveless, 

2003). And rapid math-fact retrieval has been shown to be a strong predictor of performance on 

mathematics achievement tests (Royer, Tronsky, Chan, Jackson, & Merchant, 1999). 

While the research cited above highlights the importance of math fact fluency, the 

computation capabilities of American students might well be diminishing. Tom Loveless of the 

Brookings Institute has reviewed responses to select items on the NAEP and concluded that 

performance on basic arithmetic facts declined in the 1990s (2003). More emphasis needs to be 

placed on developing rapid, effortless, and errorless recall of basic math facts. 
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NORMAL DEVELOPMENT OF FLUENT MATH FACTS 

Given the importance of the fluent recall of basic facts, the main concern is how this 

ability develops. For many children, at any point in time from preschool through at least the 

fourth grade, they will have some facts that can be retrieved from memory automatically and 

some that need to be calculated using some counting strategy. From the fourth grade through 

adulthood, answers to basic math facts are recalled from memory with a continued strengthening 

of relationships between problems and answers that results in further increases in fluency 

(Ashcraft, 1985).  

The acquisition of math facts in most normally developing children generally progresses 

from a deliberate, procedural, and error-prone calculation to one that is fast, efficient, and 

accurate (Ashcraft, 1992; Fuson, 1982, 1988; Siegler, 1988). In contrast, most students with 

math difficulty, along with those lacking consistent math fact instruction, show a serious 

problem with respect to the retrieval of elementary number facts. Hasselbring, Goin, and 

Bransford (1988) found that students with math difficulty are substantially less proficient than 

their non-math-difficulty peers in retrieving the answers to basic math facts in addition and 

subtraction. Although information is still emerging about the particular difficulties experienced 

by these children in the retrieval of this information, the evidence that does exist suggests that 

these children do not suffer from a conceptual deficit (Russell & Ginsburg, 1984) but rather from 

some sort of disruption to normal development. What this suggests is that there are huge 

differences in the amount of instruction individual children need to become fluent at retrieving 

answers to basic math facts.  

As shown in Figure 1, at age 7, regular and special education students are nearly identical 

in the number of math facts they can recall from memory, however this changes by age 8 and 

this discrepancy increases as age increases. As students with math difficulty get older, they fall 

further and further behind their non-math-difficulty peers in the ability to recall basic math facts 

from memory (Hasselbring, Goin, & Bransford, 1988). Further, this lack of fluency interferes 

with the development of higher-order mathematical thinking and problem-solving. 

 4 American Institutes for Research 



 
 

Figure 1. A comparison of the number of fluent addition facts by age for regular 
and special education students  
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DEVELOPING FLUENCY IN MATH-DELAYED CHILDREN USING 
TECHNOLOGY 

To counteract the problem described above, educators have turned to technology with 

varying degrees of success to help students achieve fluency in math facts. Although it seems 

intuitive that using technology in a drill-and-practice format helps students develop the 

declarative fact knowledge, evidence suggests that this is not the case. In an early study by 

Hasselbring, Goin, and Sherwood (1986), it was found that computerized drill and practice was 

ineffective in developing declarative fact knowledge in students with math difficulty. The 

identified problem was that typical drill-and-practice software was designed in such a way that 

students were practicing “procedural counting” strategies instead of developing the ability to 

recall facts from memory. As a matter of fact, even studies that report reduced response latencies 
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as a result of the use of computerized drill and practice could not demonstrate that facts were 

being retrieved from memory, only that procedural counting time was reduced (Christensen & 

Gerber, 1990; Pellegrino & Goldman, 1987). 

As a result of this research, Hasselbring and Goin (2005) developed an intervention 

paradigm called FASTT (Fluency and Automaticity through Systematic Teaching with 

Technology) designed to assist students in the development of declarative fact knowledge. The 

FASTT approach has been used successfully to develop mathematical fluency. It appears that the 

key to making the retrieval of basic math facts fluent is to first establish a mental link between 

the facts and their answers which must be stored in long term memory. FASTT embodies several 

unique design features to help develop these relationships. These 7 features include the 

following:  

1. Identification of fluent and non-fluent facts;  

2. Restricted presentation of non-fluent information;  

3. Student generation of problem/answer pairs;  

4. Use of "challenge times;" 

5. Spaced-presentation of non-fluent information;  

6. The appropriate use of drill-and-practice; and 

7. Computer monitoring of student performance. 

Each of the above features has been incorporated into a software program, called FASTT 

Math (2005) designed specifically to develop declarative fact knowledge.  

Effectiveness of the FASTT Model 

The principles embodied in FASTT Math were validated over several years of research 

with more than 400 students. This research with students with math difficulty has shown that the 

FASTT approach can be extremely powerful for developing fluency in the basic math facts. 

Generally, the findings show that when used daily, for about 10 minutes, most students with 

math difficulty can develop fluency in a single operation after approximately 100 sessions. The 

key to success appears to lie in the consistent use of the program. As expected, students who use 

the program regularly do much better than students who are irregular users. 

As shown in Figure 2, the effects of using FASTT Math can be quite striking. In the first 

controlled study examining the use of the FASTT model, three groups of students were matched 
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for age, sex, and race. Two of the groups consisted of students with math difficulty and the 

remaining group consisted of students without math difficulty. In the experiment, one of the 

math difficulty groups (Math-Disabled Experimental), received an average of 54 ten-minute 

sessions on the FASTT software for addition, the other two groups (Non Math-Disabled and 

Math-Disabled Contrast) received only traditional fluency instruction delivered by their 

classroom teachers. As the data show, the students with math difficulty receiving instruction with 

the FASTT approach gained, on the average, 24 new fluent facts while their math-difficulty 

peers receiving traditional instruction gained no new facts and their non-math-difficulty peers 

gained only 8 new facts. Perhaps more impressive are the maintenance data. When the 

experimental students were tested 4 months after the posttest following summer vacation, the 

students regressed by only 4 facts, indicating that once facts become fluent, they are retained at a 

high level.  

The results of this experiment have been replicated multiple times across all four 

operations. In all cases, when used consistently, the FASTT Math approach has a very positive 

effect on developing mathematical fluency in both students with and without math difficulty. 

Although FASTT Math is effective for all students needing assistance with developing fact 

fluency, it appears to be especially effective for students labeled as at risk and as learning 

disabled. 

The result of this work demonstrates that students with math difficulty can be successful 

in attaining high levels of fluency in basic mathematical operations with the appropriate 

assistance of technology; however, this assistance must go beyond simple drill and practice if 

students have not stored the problem and the associated answer in long-term memory. FASTT 

Math was designed to help students create this network of problems and answers and then 

strengthen these relationships and increase fluency. For students who have already developed 

this stored network of relationships and do not rely on strategies such as counting to achieve a 

correct answer, then most any drill-and-practice activity will strengthen these relationships. 

There are many technology-based products available that will achieve this goal (see practice 

programs listed in the CITEd Mathematics Matrix under Building Computational Fluency).  
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Figure 2. A comparison of the number of fluent addition facts for students with 
and without math difficulty 
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In sum, educators must know if students have developed a stored network of relationships 

containing basic problems and their answers or whether these relationships must be developed 

and stored in long term memory. This understanding is critical for educators to make an 

appropriate decision on which technology support will be most successful for students with math 

difficulty. 

Converting Symbols, Notations, and Text 

Scaffolding has been defined as a “process that enables a child or novice to solve a 

problem, carry out a task or achieve a goal which would be beyond his unassisted efforts” 

(Wood, Bruner, & Ross, 1976, p. 90). This support structure, or scaffold, is “faded,” or reduced, 

over time as the student becomes more independently proficient. Scaffolding is rooted in the 

learning theories espoused by Vygotsky and Piaget (Greenfield, 1984; Rogoff & Gardner, 1984; 

Stone, 1993). The term “scaffolding” was first introduced by Wood, Bruner, and Ross (1976) in 

their article entitled, “The Role of Tutoring in Problem Solving” and the practice of scaffolding 

is primarily couched in the constructivism school of learning. Although scaffolding draws from 

the work of both Vygotsky and Piaget, it was influenced heavily by Vygotsky's (1935/1978) 

learning construct called the zone of proximal development (ZPD). This construct asserts that a 
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more knowledgeable person could help learners perform beyond their actual developmental 

level.  

The original concept of scaffolding applied to the context of tutoring or one-on-one 

support. However, a classroom has multiple children with multiple ZPDs (Brown et al., 1993): 

A single teacher is often providing scaffolding for up to 35 students at the same time, 

usually basing their help not on what any individual requires at the moment, but rather on 

what they believe most of the class needs in order to be successful (Puntambekar & 

Kolodner, 2005, p. 189).  

As a result, students who face learning challenges often struggle to achieve parity with their 

peers, and students who grasp the concepts quickly are often bored and unchallenged by the 

review of material. 

In order to help overcome the challenge of having multiple ZPDs in a classroom, 

computer tools have been developed to provide scaffolding to students on an individual basis. 

Computer tools can provide a form of scaffolding as the tools help offload some of the learner’s 

cognitive task to the computer (Salomon, 1993). The goal of these tools is to enable the learner 

to eventually perform the task independently without the use of the tool (Salomon, 1993). As the 

students use these tools, they should begin to internalize this guidance, making the tools 

unnecessary.  

One kind of cognitive task that can be offloaded to a computer is converting text, 

symbols, and mathematical notations. These tools can support students who have difficulty 

decoding text and symbols. By providing this individualized support, these tools are designed to 

take some of the burden off the teacher (who cannot work individually with 35 students 

simultaneously).  
The problem with providing scaffolding to students in just the area of decoding is that it 

is not sufficient to address all students’ needs. Researchers have found that one tool may not be 

enough to support a wide range of learners with multiple ZPDs and recommend that multiple 

tools be used in the classroom (Puntambekar & Kolodner, 2005). Thus, scaffolding tools can be 

created to support various learning needs, including the five other areas of technology use found 

in the CITEd Mathematics Matrix. For example, common to many computer-assisted instruction 

interventions for students with math difficulty are representation techniques (e.g. pictorial 
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instruction) to create mathematical representations and cognitive strategies (e.g. heuristic 

procedures) for problem solving (Xin & Jitendra, 1999).  

Unfortunately, there are currently only a limited number of software packages that have 

been developed specifically to help students with difficulties decoding (see CITEd Mathematics 

Matrix for examples) as well as other learning needs and even fewer high-quality research 

studies identifying those that are effective. This lack of software and supporting research can be 

seen as an opportunity for researchers and math educators because there is currently a large 

quantity of non-special education-specific software that could be used to good effect for students 

with math difficulty. Using this new crop of software would provide researchers with new 

material for study, educators with the opportunity to expose their students to new tools, and 

students with the opportunity to gain exposure to new software that may be used to further 

maximize their potential. 

Building Conceptual Knowledge and Understanding 

Many students do not make direct conceptual links between concrete and tangible 

mathematical concepts, do not grasp representations of those concepts or relationships, and 

struggle to make the link from representation to abstractions. An important prerequisite for 

making these connections is that the declarative and procedural knowledge be taught within the 

same context(s) where it will be utilized in the future (i.e. the real world). This teaching enables 

that knowledge to be activated when needed (Bransford, Sherwood, Vye, & Rieser, 1986). Too 

often, special education students study mathematics by first learning isolated skills. Then they 

apply these skills by solving narrowly defined math problems that are purported to provide 

practice for these skills. Unfortunately, this strategy often leads to the practice of rote procedural 

skills and knowledge without students having a conceptual understanding of why the procedure 

is being used (i.e. restricted context).  

Knowledge that is accessed only in a restricted set of contexts, even though it is 

applicable to a wide variety of domains, is known as inert knowledge. In order for it to be useful, 

knowledge cannot be inert. Students must understand how to conceptually apply their knowledge 

and procedures to real-world contexts. This type of learning should result in mathematical 

knowledge that is organized to trigger the conditions when that knowledge will be needed. Lesh 

(1981) proposed that the ability to use a new idea depends on the way it is connected to our prior 
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ideas and processes. Teaching a child a concept does not guarantee that it will integrate with 

other ideas that are already understood. As a result, situations in which the idea is relevant may 

not be recognized. The ability to retrieve useful information from memory appears to be 

especially challenging for children with learning disabilities or those who are at risk of school 

failure (Hasselbring et al., 1991).  

One approach has been the use of video technology to create scenarios of real-world math 

problems (Cognition and Technology Group at Vanderbilt [CTGV], 1997). This approach to 

math instruction is called anchored instruction and has been used successfully with regular and 

special education students. This approach emphasizes the importance of anchoring or situating 

mathematical knowledge in meaningful, real-world applications. Video is used as the 

instructional medium because of its engaging characteristics. It can bring math to life for the 

students. This approach is not unique because it is delivered through video, but because it 

provides students with an opportunity to use the declarative and procedural knowledge gained in 

school to develop a conceptual understanding through the real-world application of this 

knowledge. This format helps students overcome their challenges in perceiving instances in 

which knowledge they already possess is useful. Since these environments are used within the 

context of teaching mathematical problem solving, they will be discussed in detail in the section 

on problem solving and reasoning.  

Making Calculations and Creating Mathematical Representations 

In this climate of high-tech software solutions for education, simple, older technologies 

that provide users with electronic means to make calculations, simplify and solve mathematical 

expressions and algebraic equations, often adaptive calculators, allow the user to focus on the 

conceptual and problem solving aspects of math. Technologies of this type often adaptive 

calculators that “serve as an equalizer in mathematics education” and “help students to more 

quickly and readily develop number sense, gain mathematical insight, and reasoning skills” 

(Pomerantz, 1997, p.2). 

Although calculators (graphing and/or scientific) are relatively cost-effective tools and 

have been widely available for many years, educators have been slow to include their use on a 

daily basis in part due to misconceptions regarding their use in the educational curricula. 

Pomerantz (1997) identified five common myths regarding the use of calculators by students in 
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the classroom. Among these myths are the notions that (a) calculators will promote student 

laziness, (b) students will not be stimulated/challenged if they use calculators, (c) using 

calculators impedes the development of basic mathematical skills, and (d) the use of calculators 

will create a dependency on technology. The common theme of these myths is that calculators 

will somehow hinder learning when, in fact, research has shown just the opposite to be true.  

Research by Campbell and Stewart (1993) demonstrated that the use of calculators 

stimulated students to become problem solvers and strengthened their basic understanding of 

mathematical operations. Suydam and Brosnan (1993) reported that “research from over 100 

studies indicated that the use of calculators (a) promoted achievement, (b) improved problem-

solving skills, and (c) increased understanding of mathematical ideas. Suydam and Brosnan 

(1993) also reported that students who use calculators as part of a mathematics curriculum 

showed higher rates of information retention. Hembree and Dessart (1986) reported that students 

who used calculators demonstrated higher levels of math self-concept and, in general, exhibited a 

better attitude towards mathematics.  

As effective as they may be, calculators are not the only portable devices that can be used 

with positive effect in the classroom. Handheld computers such as Palm devices and Pocket PCs 

offer an advantage of flexibility over traditional calculators. These handheld devices offer a great 

deal of computing power in a small package and a wide variety of software applications that can 

be used in a mathematics curriculum—database, spreadsheet, scientific probes/sensors, etc.  

Overall, the use of calculators and handhelds in the classroom for both students with and 

without math difficulty presents an opportunity for educators to tap into a relatively cost-

effective solution that has the potential to reap huge benefits in terms of student performance. As 

scientific calculators become more sophisticated and additional mathematics software becomes 

available for handheld devices, the power of individual student computing will increase 

dramatically. Given this, classroom curriculums must be designed dynamically allowing swift 

adaptation in order to take full advantage of the higher-order mathematical reasoning that will be 

within the grasp of future students. 

Organizing Ideas 

Research has shown that individuals who are skilled in math problem solving have 

something in common; they build a mental representation of the problem they are working 
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(Nathan, Kintsch, & Young, 1992; Pape, 2004). Additionally, skilled math problem solvers tend 

to classify or group problems by type and then look for known strategies that may be applied to 

that class of problem. The common elements of a problem that allow classification are known as 

the “underlying problem model.” Research has found that the more effective students are at 

identifying the underlying problem model, the more successful they are at problem solving 

(Hegarty, Mayer, & Monk, 1995). 

What this research effectively means is that individuals who are more effective at 

organizing their ideas about a math problem, in terms of identifying key features and elements, 

are ultimately more successful at solving problems. A graphic organizer is a visual representation 

of information. Past research has shown the use of graphic organizers to be an effective tool for 

math students (Jitendra, 2002; Willis & Fuson, 1988). Although the use of graphic organizers is 

widespread in education and the world of business (e.g. Microsoft PowerPoint presentation), 

math software that allows students to organize problems and help them identify underlying 

meaning has been limited; however, a new piece of software called GO Solve Word Problems 

has been created to help students organize math problems and discover their underlying 

structure. The software’s interface allows students to organize the component parts of a math 

problem and then helps student to identify the relationships between the values and component 

parts of the problem. 

TinkerPlots, developed with funding from a National Science Foundation grant is another 

piece of inquiry-based software that allows student-driven data organization and analysis 

(Steinke, 2005). Using TinkerPlots, students can graphically organize and construct data graphs 

by “stacking” iconic representations of numerical data. Although students can use their own data, 

TinkerPlots has several integrated rich datasets that may also be used.  

As stated in the CITEd Mathematics Matrix, technologies that [allow the organization of 

ideas] provide a digital workspace for users to explore the connections among the text of 

problems to the concrete, representational and abstract concepts and apply these relationship to a 

wide range of problem solving strategies in real-world and mathematical situations. Given this 

Mathematics Matrix purpose of “Organizing Ideas,” which includes the use of student-collected 

data in problem solving, software such as TinkerPlots and GO Solve Word Problems will 

undoubtedly open new doors to students’ understanding of data management.  
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Building Problem Solving and Reasoning  

Students with math difficulty find mathematical problem solving, particularly word 

problems, challenging for a variety of reasons as discussed by Babbitt & Miller (1996) in their 

review of literature. These challenges included misreading the problem, having difficulty 

detecting relevant versus irrelevant information, misidentifying the appropriate mathematical 

operation, making calculation errors, missing steps needed to carry out the problem, and having 

trouble organizing the information in the problem (Babbit & Miller, 1996). These challenges can 

be classified as problems with declarative, procedural, and conceptual knowledge. Students need 

all three types of knowledge to be able to solve problems. Problem solving requires students to 

know their basic mathematical facts, to execute the strategies and procedures needed to solve the 

problem, and to understand conceptually how to apply those facts and procedures. Without this 

conceptual understanding, there is no guarantee that the students will be able to apply this 

knowledge in meaningful ways when confronted with problem situations. Hasselbring et al. 

(1991) demonstrated that students often do not use prior knowledge spontaneously to solve 

problems unless they are explicitly informed about the relationship between that knowledge and 

the problem. In order for knowledge to be useful, students must understand how procedures can 

function as tools for solving relevant problems. 

For example, when solving mathematical problems, students may have the mathematical 

knowledge and procedures they need but may be unable to use them because they lack the 

conceptual understanding that allows them to match their knowledge to the problem situation. 

The difficulty arises because their mathematical knowledge is either isolated chunks of 

knowledge or they are linked to conceptual understanding or models unconnected with the 

mathematics in the current problem. Without making these connections, students may be unable 

to detect when this knowledge applies to situations or when a strategy should be used during 

problem solving. Students who are unable to recognize situations in which their knowledge can 

be applied will likely be poor problem solvers. Knowledge that remains unused by learners even 

when it is relevant across several problem situations is wasted knowledge. For knowledge to be 

useful, it must be activated at the appropriate time. To enable students to become successful 

problem solvers, they must develop a working and dynamic relationship between declarative, 

procedural, and conceptual knowledge.  
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There are several approaches for helping students with mathematical problem solving. 

Some of these approaches target the declarative and procedural knowledge problems, some focus 

on students’ difficulty with conceptual understanding, and others concentrate on improving 

students’ reasoning and critical thinking. These approaches vary depending on the nature and 

complexity of the problem. For basic problems, some students are taught to search for key 

words.  However, this approach has often been criticized because it does not always prompt the 

correct mathematical operation and creates a high likelihood of errors. Moreover, it does not 

require a real understanding of the problem situation and relegates the activity to an imitation of 

drill-and-practice (Porter, 1989). Another well-researched approach is to teach students with 

math difficulty cognitive strategies for solving problems. For example, Montague, Applegate, 

and Marguard (1993) studied the effectiveness of a cognitive strategy instruction. This 7-step 

strategy ranged from initial steps of learning to read the problem and develop hypotheses to the 

final steps of checking one’s work. This method has proven to be effective in helping students 

with math difficulty. Similar types of instructional strategies have been applied to technology-

based interventions. The majority of these interventions are still in the prototype phase and thus 

are not yet available commercially.  

One prototype intervention that incorporated a word problem-solving strategy into a 

computer tutorial program was developed by Shiah, Mastropieri, Scruggs, and Fulk (1994–

1995). The 7-step strategy included (1) reading the problem, (2) thinking about the problem, (3) 

deciding the operation, (4) writing the numerical sentence, (5) calculating the math operation, (6) 

labeling the answer, and (7) checking work. These steps were incorporated into the program as 

text pop-up buttons that would prompt the student to complete each step. The researchers 

compared different versions of this computer program with 30 elementary school students 

classified as having learning disabilities. They found that students who used the computer 

program with the 7-step strategy significantly improved their word problem solving when tested 

online, but did not make significant improvements on the traditional paper-and-pencil test of 

word problems. Moreover, they did not find a significant difference in improvement between 

students who used the strategy and the control group. They hypothesized that this may have been 

caused by the fact that the control group had more time to solve problems because the strategy 

group required more time to learn the strategy. Future research may want to re-evaluate this type 
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of computer program in a setting where all groups have equivalent time to solve the word 

problems.  

Another prototype intervention designed to assist students with solving basic word 

problems was a program that focused on teaching students different methods of problem 

representation. Stellingwerf and Van Lieshout (1999) compared four different versions of a 

computer program with 140 students (between 9 and 13 years old) from schools for children with 

learning problems and mild mental retardation. One version prompted the students to represent 

the problem as a numerical expression. A second version asked students to represent the problem 

visually by selecting icons. A third version combined both techniques, and a fourth version just 

presented students with problems without either representation strategy. There was also a control 

group that did not use any software. Although all children improved in word problem solving 

from the computer instruction, the versions of the computer program that prompted students to 

write number sentences were most effective. However, this effect was only found for students 

who were relatively more competent in solving word problems. The students in the study had 

previous experience solving word problems, and thus, it may be that iconic representations are 

more helpful for students who are less familiar with solving word problems.  

An entirely different approach that has proved effective in helping students with solving 

more complex, real-world problems is the aforementioned anchored instruction (CTGV, 1992). 

These anchored instruction environments combine video and audio technologies in a story 

format. Because students identify with the characters in the story, they are situated in the 

problem and motivated to find a solution. It is important to note that not all students may relate 

to the same story, or anchor, so it is important for educators using this technique to tailor 

anchoring content to meet the needs of their specific group of students.  

The numerical data needed to solve the problem is subtly presented during the story, and 

the students must uncover the pertinent information needed to solve the problem. Instead of 

modeling a solution, the generative format encourages students to discover the final outcome and 

prompts them to be active participants in the learning process. These anchored instruction 

environments typically include two videos that focus on related content areas. For example, these 

videos might focus on the topics of measurement, fractions, and money within the context of a 

problem scenario. Moreover, they are interdisciplinary and connect math to other subject areas, 

such as science and social studies. Overall, these video-based adventures provide a motivating 
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and realistic context for problem posing, problem solving, and reasoning within specific math 

topics for students having learning problems.  

Early research and development efforts on anchored instruction began at the Cognition 

and Technology Group at Vanderbilt (1992) with the Woodbury Jasper Series. Bottge and 

Hasselbring (1993) were the first to develop these video-based adventures specifically for 

students with learning disabilities. More recently, Bottge and his colleagues at the University of 

Wisconsin have explored a new approach called enhanced anchored instruction. This approach 

combines video-based anchors with applied problems, which allow students to physically build 

and test out their solutions in technology education classes (e.g. Bottge, 1999). Within enhanced 

anchored instruction, the videos are used as part of a broader curriculum that incorporates other 

forms of math instruction, such as direct instruction or cognitive strategy instruction, along with 

hands-on building activities.  
One example of an anchored instruction environment is a video entitled “Fraction of the 

Cost.” This video was developed by the Wisconsin Center for Education Research. It begins with 

characters Cindy, Ryan, and Michael walking by a skateboard shop. They go into the store to 

look at skateboards, and they discover an indoor skateboarding park in the back of the store. 

While running around in the park, Michael has an idea about getting his own skateboard ramp. 

They inquire with the storeowner about buying one, but the storeowner says that the ramps are 

not for sale. Instead, he provides them with a link to a Web site that provides a plan for building 

a ramp. After examining the plans, the friends decide that the ramp won’t be too difficult to build 

because the plans are similar to the compost bin they built in their technology education class. 

The question is whether they have enough money to buy the materials to build the ramp. This 

video and accompanying lesson plans can be retrieved from the Wisconsin Center for Education 

Research Web site, http://www.wcer.wisc.edu/TEAM/index.html. 

In order to solve the over-arching problem, students must first gather the relevant facts. 

All factual information is found in the video. These facts appear in the video in several different 

ways, all of which parallel natural settings. For example, the cost of lumber is provided in an 

advertisement in the Sunday paper. The viewer learns about the amount of money the kids have 

to spend on the materials through the kids talking about their savings. The skateboard 

dimensions are detailed in a schematic plan from a Web site. The solution requires that the 

students be able to use their declarative and procedural knowledge in several areas, including 
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money, measurement, whole numbers, and fractions. More importantly, they must understand 

where and how procedural knowledge in each of these areas is useful and how it is applied. In 

enhanced anchored instruction, students are then asked to apply their procedural knowledge 

gained while solving the video problem to a real-life problem of building a bench or a hovercraft 

in their technology education class. 

The researchers have examined the effectiveness of anchored instruction environments, 

like the “Fraction of the Cost” video, on the mathematical problem solving of students with 

learning difficulties. These environments were found to be more effective than other problem-

solving instruction in helping students solve complex, contextualized video problems (Bottge, 

1999; Bottge & Hasselbring, 1993; Bottge et al., 2002; Bottge et al., 2004). Students who used 

the anchored instruction environment also performed significantly better than groups that 

received other problem-solving instruction on a variety of transfer tasks, including complex text 

problems (Bottge, 1999; Bottge et al., 2002), contextualized video problems (Bottge & 

Hasselbring, 1993), and applied construction problems (Bottge et al., 2004). Only one study did 

not find this type of environment to have a significant effect on transfer for complex text 

problems (Bottge & Hasselbring, 1993). 

Overall, students in the anchored instruction group were able to transfer skills learned 

during instruction to a variety of problems. These findings indicate that a much more robust 

relationship between these students’ declarative, procedural, and conceptual knowledge was 

developed. On the other hand, the majority of these studies found that anchored instruction 

environments were no more effective than other problem-solving instruction on improving 

students' ability to solve traditional word problems (Bottge, 1999; Bottge & Hasselbring, 1993; 

Bottge et al., 2003; Bottge et al., 2001).  

In general, research has found that anchored instruction environments are very effective 

for students with learning disabilities within remedial education settings (Bottge, 1999; Bottge & 

Hasselbring, 1993; Bottge et al., 2003; Bottge et al., 2001). On the other hand, when students 

with learning disabilities were taught within inclusive classroom settings, anchored instruction 

environments did not improve their scores to the same extent as when students were separated 

into remedial and general education classes (Bottge et al., 2002; Bottge et al., 2004). Bottge et al. 

(2004) recommend that, in inclusive environments, anchored instruction environments be used in 

conjunction with individualized or pull-out instruction.  
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In a different type of study, Fuchs, Fuchs, Hamlett, and Appleton (2002) compared 

computer programs that incorporate contextualized videos to small-group tutoring that provided 

instruction on problem-solving rules and transfer to students with math difficulty. Students in the 

tutoring group were taught to look for similarities between novel and familiar problems. On real-

world problem-solving and transfer tasks, both groups improved to a similar extent. For the 

transfer tasks, both groups performed significantly better than the control group. However, for 

simpler word problems, students in the tutoring groups did significantly better than the computer 

group. These results were replicated in a later article by Fuchs and Fuchs (2005). These findings, 

along with the results from Bottge and his colleagues, indicate that anchored instruction or 

contextualized environments may be more beneficial for teaching students how to solve more 

complex, real-world mathematical problems, whereas other approaches may be more suitable for 

more traditional word problems.  

As shown from this review of technological innovations for improving the mathematical 

problem solving of students with disabilities, there is a great need for empirical studies of 

software programs that are commercially available for use in inclusive and special education 

classrooms. It is also critically important for researchers to collaborate with software companies 

to further develop their research prototypes, so they can be made available to a wider audience. 

Although the majority of the technology-based interventions reviewed are still in the prototype 

phase, the findings may be helpful for educators in looking for software with specific features 

that have proven to be effective in helping students with mathematical problem solving.  

SUMMARY 

In sum, the differential in mathematics performance between students with and without 

math difficulty that has been observed over many years remains, yet the commitment to 

improving outcomes for students with math difficulty continues to grow. One strategy that needs 

additional attention involves the use of technology designed to teach mathematical concepts in 

non-traditional ways. At present, the sheer quantity of educational software and other tools that 

are available for teachers to use in the classroom is significant. Additionally, the cost of much of 

this hardware and software is relatively low. Nevertheless, while the commitment to improving 

the math performance of students with math difficulty is strong and the technology to help 

educators accomplish this goal is readily available, there is a paucity of research related to the 
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effectiveness of these approaches. Further, there is a dearth of research related to the 

identification of best practices necessary to effectively implement math instruction with the help 

of technology.  

One major goal of educators of students with math difficulty should be to conduct 

ongoing research to determine the best use of existing technology for enhancing mathematical 

learning. Further, educators and researchers should work closely with developers and publishers 

of new hardware and software and conduct high-quality research targeted at identifying effective 

practices that accompany the use of new products. In this paper we have attempted to identify 

important areas in need of research and development and to examine a variety of technologies 

that can enhance the mathematical learning of all students, but especially those students with 

math difficulty. Hopefully, we have identified areas of need that will serve as a guidepost for 

future research and development activities. 
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