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Though this be madness, yet there is method in’t.

Hamlet, Act II, Scene 2, Line 205

I. INTRODUCTION

Four hundred years post-Hamlet, researchers in mathematics education might well invert 
Polonius’s famous comment: in contemporary research, though this be method, yet there is 
madness in’t seems fairly close to the mark. In this chapter I will unravel some of the reasons 
for the madness and the method in contemporary research, suggest criteria regarding the 
appropriateness and adequacy of investigatory methods and their theoretical underpinnings, 
and identify some productive pathways for the development of beginning researchers’ skills 
and understandings.

Let us begin with an indication of the magnitude of the task. In terms of scale, it is 
worth noting that the Handbook of Qualitative Research in Education (LeCompte, Millroy, 
& Preissle, 1992) and the Handbook of Research Design in Mathematics and Science Education 
(Kelley & Lesh, 2000) are 881 and 993 pages long, respectively. Neither of these volumes 
claims to cover the territory; moreover, there is relatively little overlap between them. The 
vast majority of the former is devoted to ethnographic research, which is but one of many 
approaches to understanding what happens in educational settings. The core of the latter is 
devoted to elaborating half a dozen “research designs that are intended to radically increase 
the relevance of research to practice” such as teaching experiments and computer-modeling 
studies. Neither discusses the kinds of quantitative or experimental methods that dominated 
educational research just a few decades ago (see, e.g., Campbell & Stanley, 1966), and which 
remain important to understand—increasingly so in the United States, where the federal gov-
ernment is placing great stress on the “gold standard” randomized controlled trials (see, e.g., 
Whitehurst, 2002, 2003). Given the broad spectrum of contemporary work, any attempt in a 
single chapter to deal with educational research methods must of necessity be selective rather 
than comprehensive. Hence, I have adopted the strategy of identifying and elucidating major 
themes. For an accessible introduction to a broad range of methods, readers might wish to 
examine Green, Camilli, and Elmore (2006).

Second, some historical perspective is in order. Mathematics education is solidly grounded 
in psychology and philosophy among other fi elds, and can thus claim to have a long and 
distinguished lineage. However, the discipline of research in mathematics education is itself 
quite young. The fi rst meeting of the International Congress on Mathematics Education was 
held in 1968. Volume 1 of Educational Studies in Mathematics appeared in May 1968. The 
Zentralblatt für Didaktik der Mathematik was fi rst published in June 1969, the Journal for 
Research in Mathematics Education in January 1970. In addition, while growth in the fi eld 
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has been substantial, that growth has been anything but evolutionary. As a consequence fi rst 
of the “cognitive revolution” in the 1970s and 1980s and then of an expanded emphasis 
on sociocultural issues and methods in the 1990s the fi eld has, within its short life span, 
completely reconceptualized the nature of the phenomena considered to be central, and it 
has developed new methods to explore them. Although signifi cant progress has been made, 
educational research has hardly entered a period of “normal science.” What we take to be 
foundational assumptions, how we investigate various empirical phenomena, and how we 
provide warrants for the claims we make, are all issues that stand in need of clarifi cation and 
elaboration. To the degree that space allows, those issues will be addressed in this chapter.

Sections II and III of this chapter provide the broad context for the discussions that fol-
low. Section II provides a brief summary of trends in mathematics education over the 20th 
century, describing the philosophical underpinnings and research methods of some major 
approaches to the study of mathematical thinking, teaching, and learning. A main point is 
that mathematics education research is a young discipline, having coalesced in the last third 
of the century. This serves, in large measure, to explain the diversity of perspectives and 
methods; some degree of chaos is hardly surprising during the early stages of a discipline’s 
formation. Section III summarizes the current state of affairs, with an eye toward the future. 
An argument is made that the “pure versus applied” characterization of much research may 
be a misdirection—that educational research has progressed to the point where it can address 
many basic issues in the context of meaningful applications.

The core of this chapter, Sections IV, V, and VI, is devoted to the elaboration of a frame-
work that addresses the purposes and conduct of research. It addresses the role of underlying 
assumptions in the conduct of research, the implications of (implicit or explicit) choices of 
theoretical frameworks and methods for the quality of the research fi ndings, and the nature 
of the warrants one can make regarding research fi ndings.

As a rough heuristic guide for the discussion of methods, the following framework is used. 
Research contributions will be conceptualized along three dimensions: their trustworthiness 
(how much faith can one put in any particular research claim?), their generality (are claims 
being made about a specifi c context, a well defi ned range of contexts, or are they suppos-
edly universal?), and their importance. Section IV provides an overarching description of 
the research process: the choice of conceptual framework, the focal choice of data and their 
representation, their analysis, and the interpretation of the analyses. This description focuses 
largely on places where essential decisions are made, and on possible problems regarding 
trustworthiness and generality when such decisions are made. Section V offers a set of criteria 
by which educational theories, models, and fi ndings can be judged. Section VI elaborates on 
the framework discussed above, with an emphasis on the generality dimension of the frame-
work. It offers a series of examples illustrating the kinds of claims that can be made, ranging 
from those that make no claim of generality (“this is what happened here”), to those that 
claim to be universal (“the mind works in the following ways”). For each class of examples 
discussed, issues of trustworthiness and importance are addressed. 

Section VII addresses issues related to the preparation of educational researchers. The edu-
cational enterprise is complex and deeply interconnected, and simple approaches to simple 
problems are not likely to provide much purchase on the major issues faced by the fi eld. But, 
beginning researchers have to start somewhere. Is there a reasonable way to bootstrap into 
the necessary complexity? Are there general chains of inquiry, and pathways into educational 
research, that seem promising or productive? Brief concluding remarks are made in Section 
VIII. 

II. A BRIEF HISTORY: PERSPECTIVES AND METHODS

Throughout much of the 20th century, a range of perspectives and their associated 
research methods competed for primacy in mathematics education. Some of those 
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perspectives were: associationism/behaviorism, Gestaltism, constructivism, and later, 
cognitive science and sociocultural theory.

Associationism and behaviorism were grounded in the common assumption that learning 
is largely a matter of habit formation, the consistent association of particular stimuli in an 
organism’s environment with particular events or responses. The generic example of behav-
iorism is that of Pavlov’s dogs, which salivated at the sound of their handlers’ approach—the 
association between certain noises and their upcoming meals being so strong that it induced 
a physiological response. Pavlov showed experimentally that the response could be reinforced 
so strongly that the dogs salivated in response to stimulus noises even when no food was pres-
ent. Presumably, human learning was similar. E. L. Thorndike’s 1922 volume The Psychology 
of Arithmetic established the foundation for pedagogical research and practices grounded 
in associationism. Thorndike’s learning theory was based on the concept of mental bonds, 
associations between sets of stimuli and the responses to them (for example, “three times 
fi ve” and “fi fteen”). Like muscles, bonds became stronger if exercised and tended to decay if 
not exercised. Thorndike proposed that, in instruction, bonds that “go together” should be 
taught together. This theoretical rationale provided the basis for extended repetitions (other-
wise known as “drill and practice”) as the vehicle for learning.

In broad-brush terms, associationist/behaviorist perspectives held sway at the beginning 
of the 20th century—at least in the United States. Evidence thereof may be found in two 
yearbooks, the very fi rst Yearbook of the (U.S.) National Council of Teachers of Mathematics, 
was published in 1926, and the 1930 Yearbook of the (U.S.) National Society for the Study 
of Education (NSSE). 

A theory based on the development of bonds and associations lends itself nicely to empiri-
cal research. From the associationist perspective, a fundamental goal is to develop sequences 
of instruction that allow students to master mathematical procedures effi ciently, with a mini-
mum of errors. Thus, relevant research questions pertain to the nature of drill – how much, 
and of what type. Such work was relatively new, heralding the beginnings of a “scientifi c” 
approach to mathematics instruction. It is interesting to note, for example, that the editors 
of NCTM’s 1926 Yearbook, A General Survey of Progress in the Last Twenty-Five Years, intro-
duced a research chapter (Clapp, 1926) with the following statement: 

Detailed investigations and controlled experiments are distinctly the product of the last 
quarter century. The Yearbook would not be truly representative of the newest develop-
ments without a sampling of the newer types of materials that are developing to guide our 
practice. (NCTM, 1926/1995, p. 166) 

The 1926 NCTM Yearbook contains two chapters that focus on research. The fi rst (Schor-
ling, 1926) invokes Thorndike and provides an extensive summary of “The psychology of 
drill in mathematics” (pp. 94–99), including a list of twenty “principles which have been 
of practical help to [the author] in the organization and administration of drill materials.” 
The second, mentioned above (Clapp, 1926), represented the state of the art in the study of 
student learning of arithmetic. An empirical question, for example, was to determine which 
arithmetic sums students fi nd more diffi cult. Clapp reports:

In the study of the number combinations a total of 10,945 pupils were tested. The num-
ber of answers to combinations was 3,862,332…. [The sums] were read to pupils at the 
approximate rate of one combination every two seconds. The rate was determined by 
experimentation and the time was made short enough to prevent a pupil’s counting or 
getting the answer in any other round-about way…. The purpose of the study was to 
determine which combinations had been reduced to the automatic level. The results may 
be said to indicate the relative learning diffi culty of the combinations. (Clapp, 1926, pp. 
167–168)
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The 1930 NSSE Yearbook (Whipple, 1930), was devoted to the study of mathematics educa-
tion. Its underpinnings were avowedly behaviorist/associationist:

Theoretically, the main psychological basis is a behavioristic one, viewing skills and hab-
its as fabrics of connections. This is in contrast, on the one hand, to the older structural 
psychology which still has to make direct contributions to classroom procedure, and on 
the other hand, to the more recent Gestalt psychology, which, though promising, is not 
yet ready to function as a basis of elementary education. (Knight, 1930, p. 5)

Thus, in the 1930 NSSE Yearbook one saw research studies examining the role of drill in 
the learning of multiplication (Norem & Knight, 1930) and fractions (Brueckner & Kelley, 
1930), and on the effectiveness of mixed drill in comparison to isolated drill (Repp, 1930). 
Errors were studied in fi ne-grained detail, similarly to the work reported by Clapp. In their 
study of multiplication, for example, Norem and Knight (1930) analyzed the patterns found 
in 5365 errors made by students practicing their multiplication tables.

It is interesting to note from the perspective of these Yearbook authors and editors, Gestalt 
psychology, while “promising,” was not ready for prime time with regard to mathematics 
instruction. In many ways, the Gestaltists’ stance could be seen as antithetical to that of the 
associationists:

With the development of “fi eld theories” of learning, of which the Gestalt theory is most 
familiar to school teachers, the center of interest shifted from what was often, and perhaps 
unjustly, called an “atomistic” concept of learning to one which emphasized understand-
ing of the number system and number relations and which stressed problem solving more 
than drill on number facts and processes. (Buswell, 1951, p. 146)

Indeed, insight and structure were central concerns of the Gestaltists. An archetypal Gestaltist 
story is Poincaré’s (1913; see also Hadamard, 1945) description of his discovery of the struc-
ture of Fuchsian functions. Poincaré describes having struggled with the problem for some 
time, then deliberately putting it out of mind and taking a day trip. He reports that as he 
boarded a bus for an excursion, he had an inspiration regarding the solution, which he veri-
fi ed upon his return.

Poincaré’s story is typical, both in substance and methods. With regard to substance, the 
outline of the story is the basic tale of Gestalt discovery: one works as hard as possible on a 
problem, lets it incubate in the subconscious, has an insight, and verifi es it. Similar stories are 
told concerning the chemist Kekulé’s dreaming of a snake biting its tail, and realizing that 
benzene must be ring-like in structure, and of Archimedes (in the bath) solving the problem 
of how to determine whether King Heron’s crown is pure gold, without damaging the crown 
itself. With regard to method, what Poincaré offers is a retrospective report.

Perhaps the best known advocate of the Gestaltist perspective with regard to schooling 
is Max Wertheimer. Wertheimer’s (1945) classic book, Productive Thinking, is a manifesto 
against “blind drill” and its consequences. Wertheimer describes the responses he obtained 
from students when he asked them to work problems such as 

357 + 357 +357

3
= ?

He reported that some “bright subjects” saw through such problems, observing that the 
division “undoes” the addition, yielding the original number. Wertheimer found, however, 
that these students were the exception rather than the rule. Many students who had earned 
high marks in school were blind to the structure of the problem, and insisted on working 
through it mechanically. He continues,



Research methods in (mathematics) education 471

These experiences reminded me of a number of more serious experiences in schools, 
which had worried me. I now looked more thoroughly into customary methods, the ways 
of teaching arithmetic, the textbooks, the specifi c psychology books on which their meth-
ods were based. One reason for the diffi culty became clearer and clearer: the emphasis 
on mechanical drill, on ‘instantaneous response,’ on developing blind, piecemeal habits. 
Repetition is useful, but continuous use of mechanical repetition also has harmful effects. 
It is dangerous because it easily induces habits of sheer mechanized action, blindness, 
tendencies to perform slavishly instead of thinking, instead of facing a problem freely. 
(Wertheimer, 1945, pp. 130–131)

The focus of the Gestaltists’ work—whether in discussions of schooling or in discussions of 
professionals’ mathematical and scientifi c thinking (e.g., in Poincaré’s story and Wertheimer’s 
interviews of Einstein regarding the development of the theory of relativity), was on meaning, 
on insight, on structure. Their methods were “introspectionist,” depending on individuals’ 
reports of their own thinking processes. These methods, alas, proved unreliable. As Peters 
(1965) summarizes subsequent research, “a wealth of experimental material [demonstrated] 
the detailed effects of attitudes and interests on what is perceived and remembered. Perception 
and remembering are now regarded as processes of selecting, grouping, and reconstructing. 
The old picture of the mind as receiving, combining, and reproducing has fi nally been aban-
doned” (p. 694). And, one might add, methods that depended on individuals’ reports of their 
own mental processes could hardly be depended upon.

Following World War II, the “scientifi c” approach to research in education returned with 
a vengeance. Given the context, this was natural. It was science that had brought an end to 
the war, and it was science that promised a brighter future. (The motto of one major corpora-
tion, for example, was “progress is our most important product.” There is no doubt that the 
progress referred to was scientifi c.) After a decade of worldwide turmoil, what could be more 
psychologically desirable—or prestigious—than the prospect of a rational, orderly way of 
conducting one’s business? 

The wish to adopt the trappings of science played out in various ways. Among them were 
the ascendancy of the radical behaviorists and the dominance of “experimental” methods in 
education—and more broadly in the social sciences, so named for the reasons discussed in the 
previous paragraph. First, consider the radical behaviorists. As noted above, the “mentalistic” 
approaches of groups such as the Gestaltists, depending on introspection and retrospective 
reports, were shown to be unreliable. The radical behaviorists such as B.F. Skinner (see, e.g., 
Skinner, 1958) took this objection to reports of mental processes one step further. They 
declared that the very notions of “mind” and “mental structures” were artifactual and theo-
retically superfl uous; all that counted was (observable and thus quantifi able) behavior.

The radical behaviorists, following in the tradition of their classical behaviorist anteced-
ents, took much of their inspiration and methods from studies of animals. Rats and pigeons 
might not be able to provide retrospective verbal reports, but they could learn—and their 
behaviors could be observed and tallied. One could teach a pigeon to move through a very 
complicated sequence of steps, one step at a time, by providing rewards for the fi rst step until 
it became habitual, then the second step after the fi rst, and so on. Out of such work came 
applications to human learning. Resnick (1983) describes Skinner’s approach as follows:

[Skinner] and his associates showed that “errorless learning” was possible through shap-
ing of behavior by small successive approximation. This led naturally to an interest in a 
technology of teaching by organizing practice into carefully arranged sequences through 
which the individual gradually acquires the elements of new and complex performance 
without making wrong responses en route. This was translated for school use into “pro-
grammed instruction”—a form of instruction characterized by very small steps, heavy 
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prompting, and careful sequencing so that children could be led step by step toward abil-
ity to perform the specifi ed behavioral objectives. (Resnick, 1983, pp. 7–8)

It is worth noting that the holy grail of “errorless learning” persisted long after the behavior-
ists’ day in the sunshine had supposedly passed. Many well-known computer-based tutoring 
systems marched students through various procedures one step at a time, refusing to accept as 
correct inputs that, even if ultimately sensible, were “errors” in the sense that they were not 
the “most logical” input anticipated by the program.

Behaviorism, both in its earlier and then in its radical form, was one manifestation of sci-
entism in the research culture. As indicated above, scientism was widespread, permeating all 
of the social sciences during the third quarter of the 20th century. It played out in the whole-
sale and ofttimes inappropriate adoption of statistical and “experimental” methods through 
much of the third quarter of the century. Many educational experiments were modeled on the 
“treatment A versus treatment B” model used in agricultural or medical research.

Under the right conditions, comparison studies can provide tremendously useful infor-
mation. If, for example, two fi elds of some crop are treated almost identically and there is a 
signifi cant difference in yield between them, that difference could presumably be attributed 
to the difference in treatment (which might be the amount of watering, the choice of fertil-
izer, etc.). Drug tests operate similarly, with “experimental” and “control” groups being given 
different treatments. Statistical analyses indicate whether the treatment drug has signifi cantly 
different effects than the control (typically a placebo). 

Unfortunately, the “right conditions” rarely held in the educational work described above. 
Although it may be possible to control for all but a few variables in agricultural research, the 
same is not the case for most educational comparisons. If different teachers taught “experi-
mental” and “control” classes, the “teacher variable” might be the most signifi cant factor in 
the experience. Or, the same teacher might teach the two treatments at different times of the 
day, and the fact that one group met early in the morning and the other right after lunch (or 
the teacher’s enthusiasm for one treatment) would make a difference. Or, the “treatment” 
itself might be ill defi ned. There are many ways in which ostensibly straightforward experi-
mental comparisons can go wrong.

Half a dozen years ago, when I wrote the draft of this chapter for the fi rst edition of this 
Handbook, I wrote the following: “One could say much more, but there is no need to fl og a 
dead horse; by and large, the fi eld has abandoned such methods. This in itself is unfortunate; 
the use of quantitative methods may need to be revisited (with care)” (Schoenfeld, 2002b, p. 
240). It is ironic that in the United States there has been a resurgence of experimentalism—
but in many ways without the care and attention that needs to be devoted to experimental 
methods, and thus with the serious possibility of a return to the scientism of the mid-1900s. 
We return to the issue of experimental methods at the end of this section and in Section IV.

Let us continue the historical narrative. Slowly, and in various ways, U.S. mathematics edu-
cation researchers made their way out of the paradigmatic and methodological straightjackets 
of the 1960s and 1970s. In many ways, work had simply run itself into the ground, and the 
fi eld came to recognize that fact. For example Kilpatrick discussed the methodological state 
of the art in the mid-1970s as follows:

No one is suggesting that researchers abandon the designs and techniques that have 
served so well in empirical research. But a broader conception of research is needed … 

Some years ago a group of researchers gave a battery of psychological tests each sum-
mer to mathematically talented senior high school students.… The scores on the tests 
were intercorrelated, and some correlation coeffi cients were signifi cant, some not. Several 
research reports were published.… As Krutetskii (1976) notes, the process of solution did 
not appear to interest the researchers—yet what rich material could have been obtained 
from these gifted students if one were to study their thinking processes in dealing with 
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mathematical problems. Why were the students simply given a battery of tests to take 
instead of being asked to solve mathematical problems? It’s a good question. (Kilpatrick, 
1978, p. 18)

In a hugely ironic twist, the study of mind was largely resuscitated by artifi cial intelligence 
(AI), the study of “machines that think.” Pioneering efforts in AI included computer pro-
grams such as Newell and Simon’s (1972) “General Problem Solver,” or GPS. GPS played a 
reasonable game of chess. It solved “cryptarithmetic” problems.1 And it solved problems in 
symbolic logic. Specifi cally, GPS derived 51 of the fi rst 53 results in Russell and Whitehead’s 
famous mathematical treatise Principia Mathematica—and GPS’s proof of one result was 
shorter than the proof provided by Russell and Whitehead.

In order to write problem solving programs, Newell and Simon asked people to solve large 
numbers of problems, working on them “out loud” so that researchers could record and later 
analyze what was done as their subjects worked on the problems. They transcribed the record-
ings and pored over the transcripts, looking for productive patterns of behavior—that is, for 
strategies that mimicked the successful “moves” made by their subjects. Those strategies, 
once observed and abstracted, were then written up as computer programs.

The irony comes from the fact that AI provided the means for hoisting the behaviorists 
by their own dogmatic petard. AI programs “worked”—their record of problem solving was 
clear. More importantly, all of their workings were out in the open—every decision was overtly 
specifi ed. By virtue of being inspectable and specifi able, work in AI met all of the behavior-
ists’ criteria for being scientifi c. At the same time, the success of the AI enterprise depended 
entirely on the investigation of human thought processes. Hence, the study of “mind” was 
legitimized. Studies of human thinking and research methods that involved reports of prob-
lem solving were once again scientifi cally “acceptable.” 

Given the climate at the time, the legitimization of such methods was by no means easy. 
There was a great deal of controversy over the use of problem solving protocols (records of 
out-loud problem solutions), and it took some years before the dust settled (see, e.g., Erics-
son & Simon, 1980; Nisbett & Wilson, 1977). At the same time, a wide variety of methods 
and perspectives became known internationally, sowing the seeds for the profusion of views 
and techniques that would fl ower in the latter part of the century. Piaget had, of course, been 
developing a massive corpus of work on children’s intellectual development, both philosophi-
cal (e.g., Piaget, 1970) and with regard to various mathematical concepts such as number, 
time, and space (e.g., Piaget, 1956, 1969a, 1969b). Piaget’s work brought the “clinical inter-
view” to prominence as a research method. The work of Krutetskii (1976) and colleagues 
(see Kilpatrick & Wirszup, 1975) popularized the idea of “teaching experiments,” detailed 
studies of principled attempts at instruction and their consequences in terms of students’ abili-
ties to engage with mathematics. Freudenthal’s (1973, 1983) work lay the foundation for the 
study of “realistic mathematics,” a central tenet of which is that mathematics instructional 
sequences should be grounded in contexts and experiences that support the development of 
meaningful mathematical abstractions.

Broadly speaking, the 1970s and the 1980s were a time of explosive growth. The “cog-
nitive revolution” (see, e.g., Gardner, 1987) brought with it a signifi cant epistemological 
shift, and with it, new classes of phenomena for investigation and new methods for exploring 
them. For much of the century, the focus of research in mathematical thinking and learn-
ing had been on knowledge—a body of facts and procedures to be mastered. As theoretical 
frameworks evolved, such knowledge was seen to be only one (albeit very important) aspect of 
mathematical thinking. Theoretical frameworks (see, e.g., Schoenfeld, 1985) indicated that 
central aspects of mathematical performance included the knowledge base, problem solving 
strategies, aspects of metacognition, and beliefs. They invoked the notion of “culture,” in 
that students were seen to engage in (often counterproductive) practices derived from their 
experiences in school, and which were quite different from the practices of the mathematical 
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community. Each of these aspects of cognition was explored with a wide variety of emerging 
methods: observational and experimental studies, teaching experiments, clinical interviews, 
the analysis of “out loud” protocols, computer modeling, and more.

There were, however, few ground rules for conducting such research—either in terms of 
investigatory norms or in terms of quality standards. Research in mathematics education had 
moved from a period of “normal science” to one in which the ground rules were unknown. 
Fundamental questions, not well addressed, became: How does one defi ne new phenomena of 
interest? How does one look for them, document them? How does one make sense of things 
such as the impact of metacognitive decision making on problem solving performance, the 
relationship between culture and cognition, or what might be an appropriate focus for investi-
gation in the blooming complexity of a teaching experiment? The fi eld began to address such 
issues: see, for example, Schoenfeld, 1992.

The fl owering of theoretical perspectives and methods continued through the end of the 
20th century. Specifi cally, sociocultural perspectives had long roots. Vygotsky, for example,2 in 
both Mind in Society (1978) and also Thought and Language (1962) had advanced a perspec-
tive that, perhaps in too-simple terms, could be seen as complementary to Piaget’s. Vygotsky 
and his theoretical allies argued that learning is a function of social interaction:

Human learning presupposes a specifi c social nature and a process by which children 
grow into the intellectual life of those around them. (Vygotsky, 1978, p. 88)

Every function in the child’s social development occurs twice: fi rst, on the social level, and 
later on the individual level; fi rst, between people (interpsychological), and then inside the 
child (intrapsychological). This applies equally to voluntary attention, to logical memory, 
and to the formation of concepts. All the higher functions originate as actual relations 
between human individuals. (Vygotsky, 1978, p. 57)

From the 1970s onward, multiple lines of research explored aspects of cognition and culture. 
For example, a series of studies conducted in Brazil (see Carraher, 1991 for a review) explored 
the relationships between mathematical understandings in school and in “real world” con-
texts such as candy selling. The main theoretical perspective adopted by the French for studies 
of mathematical didactics presumed the existence of a “didactical contract” that is inherently 
social in nature (see, e.g., Brousseau, 1997). German work, signifi cantly shaped by Bauersfeld 
(e.g., 1980, 1993), took as a given that there are multiple realities and social agendas play-
ing out in instruction, and that one must attend to “language games” (à la Wittgenstein) 
in the mathematics classroom. By the time of ICME VII in Quebec (1992), a multiplicity 
of competing theoretical perspectives had blossomed. The Proceedings of the VII Inter-
national Congress on Mathematics Education’s Working Group on Theories of Learning 
(Steffe, Nesher, Cobb, Goldin, & Greer, 1996), for example, contains three large sections: 
“Sociological and anthropological perspectives on mathematics learning,” “Cognitive science 
theories and their contributions to the learning of mathematics,” and “The contributions of 
constructivism to the learning of mathematics,” as well as a fourth small section that includes 
explorations of metaphor as the possible basis for a theory of learning of mathematics (see also 
English, 1997; Sfard, 1994).

At the end of the previous century and the beginning of the present one, one saw a pro-
liferation of perspectives, of theories, and of methods. On the one hand, this is undoubtedly 
healthy: the fi eld had escaped from the paradigmatic and theoretical straightjackets of the 
earlier part of the 20th century, and it was virtually bursting with energy and excitement. 
To give but two seminal examples, the year 2002 saw the publication of two journal special 
issues that served both to problematize the state of research and to move it forward. A special 
issue of Mathematical Thinking and Learning (Nasir & Cobb, 2002) offered theoretical re-
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framings of issues related to diversity, equity, and mathematical learning. And, a special issue 
of the Journal of the Learning Sciences (Sfard & McClain, 2002) presented a series of papers, 
all of which analyzed a common body of video data. Questions of what one can say, with 
what assurance, about a body of data, will help the fi eld to move forward. Refl ective analysis 
is entirely appropriate for a young fi eld that is very clearly not in a time of “normal science” 
(Kuhn, 1970).

Since the publication of the fi rst edition of this Handbook, there has been a signifi cant shift 
in the climate surrounding educational research in the Unites States. The U.S. Department of 
Education, specifi cally the Institute for Education Sciences (IES), has taken a strong stance in 
favor of applied evaluative research employing the “gold standard” of randomized controlled 
trials (see, e.g., Whitehurst, 2002, 2003). IES has made a major investment in the creation 
of the What Works Clearinghouse (WWC; see http://www.whatworks.ed.gov/), whose task 
it is to conduct reviews of the literature in search of studies that meet rigorous analytic stan-
dards; it has also funded the creation of a new educational research society, the Society for 
Research on Educational Effectiveness (see http://www.sree-net.org/), whose purpose it is 
to “to advance and disseminate research on the causal effects of education interventions, 
practices, programs, and policies.” What will come of these efforts remains to be seen. As 
noted above, the use of experimental methods should indeed be revisited: quantitative meth-
ods have been under-utilized in the past few decades, and such methods should be part of 
the researcher’s tool kit. However, beginning efforts are hardly auspicious. I was WWC’s fi rst 
Senior Content Advisor for its mathematics studies. I resigned in 2005 when WWC failed 
to address some fundamental fl aws in its published study reports, and then took actions that 
resulted in the cancellation of the special journal issue in which my discussion of these issues 
was to appear. A case can be made that there is now in education an unusually strong and 
unfortunate mixing of political and intellectual agendas, much as there is in the case of the 
suppression of research on global warming that is contrary to current federal ideology. Details 
may be found in Schoenfeld (2006, March).

III. THE CURRENT STATE OF AFFAIRS3

This section focuses on current needs. It begins with some assertions about desiderata for 
research, and moves on to a discussion of current challenges. It takes as background the cur-
rent and somewhat chaotic state of research: that there are multiple and competing theoreti-
cal perspectives, and a host of methods that are tailored to specifi c problems, but of limited 
general utility.

The fi rst two assertions regarding desiderata for high-quality research live in dialectic 
tension:

 1. One must guard against the dangers of compartmentalization. It is all too easy to focus 
narrowly, ignoring or dismissing work or perspectives not obviously related to one’s own. 
This can be costly, given the systemic and deeply connected nature of educational phe-
nomena. Educators need a sense of the “big picture” and of how things fi t together.

 2. One must guard against the dangers of being superfi cial. Superfi cial knowledge (of infor-
mation or methods) is likely to yield trivial research. Generally speaking, high quality 
research comes when one has a deep and focused understanding of the area being exam-
ined, and extended experience mulling over the issues under question. 

Needless to say, it is diffi cult to strive toward both depth and breadth simultaneously. Yet they 
are both necessary.

The third assertion has to do with the current state of theory and methods:
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 3. Educational research has reached the point where it is possible to conduct meaning-
ful research in contexts that “matter,” and not simply in the laboratory. Indeed, the 
traditional model of doing basic research and then applying it in context needs to be 
reconsidered.

The fourth and fi fth assertions deal with the conduct of research, and serve as announcements 
of themes to be elaborated at length in this chapter:

 4. In conducting research, one must have a sense of where one stands and where one thinks 
he or she is heading. On stance: One has biases and a theoretical perspective, whether one 
thinks so or not. These affect what one “sees.” On direction: Methods are not used in the 
abstract, or pulled off the shelf. Any research method is, in effect, a lens or fi lter through 
which phenomena are viewed (and possibly clarifi ed, or distorted, or obscured). Thus, 
the ways that questions are framed should shape the ways that methods are selected and 
employed.

 5. A fundamental issue both for individuals conducting their own studies and for the fi eld as 
a whole is the need to develop a deep understanding of what it means to make and justify 
claims about educational phenomena. What is a defensible claim? What is the scope of 
that claim? What kinds of evidence can be taken as a legitimate warrant for that claim? 

The discussion that follows provides some brief examples in support of the fi rst two claims. 
The third assertion is elaborated at greater length, for it characterizes the evolving contexts 
within which it is now possible to do basic research and to “make a difference.” The fourth 
and fi fth assertions point to the main substance of this chapter. A few points will be made 
briefl y, by way of orientation to what follows.

Issue 1: The dangers of compartmentalization

It is easy to fi nd examples of the costs of educational myopia. One can point fi ngers at those 
administrators who fail to value subject matter understanding, such as those who want to 
know how (not if) they can “retrain” surplus social studies teachers, in the break between 
school years, to teach mathematics the following year. Or, one can point to an inverse prob-
lem, mathematicians who believe that knowing the subject matter is all that is required by way 
of the preparation of mathematics teachers. Indeed, major educational movements have been 
ill conceived and squandered large amounts of money, precisely because of their tunnel vision. 
Consider, for example, various attempts to provide students with preparation, in school, for 
productive work lives. This is known as the “school-to-work” problem.

Most proposed school-to-work programs are oriented toward skills: They may proceed 
by examining the workplace, identifying productive skills, and teaching them directly. Or, 
they may take a more “contextual” approach, with suggestions that students should engage 
in apprenticeships and/or that curricula should be designed to refl ect workplace demands. 
Such approaches are doomed to fail. There is, of course, a pragmatic reason. The skills set is 
a moving target, in that skills learned today will be obsolete tomorrow, and new skills will 
be needed. More importantly, there is a deep theoretical reason. The past quarter century 
of research in mathematics education has shown that skills are but one component of math-
ematical performance. Problem solving strategies, metacognition, beliefs, and domain-spe-
cifi c practices are also aspects of mathematical behavior. These are essential components of a 
theory of mathematical behavior. And it’s not just mathematics; a good case can be made that 
they are relevant in any domain.

If you want people to be good at X, then you ought to have a theory of what it means 
to be good at X. A starting place for the dimensions of such a theory should be established 
theories of competence from other areas. For example, school-to-work attempts that proceed 
in ignorance of theoretical frameworks and advances in mathematics education—ignoring, for 
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example, crucial aspects of performance such as metacognition and beliefs—proceed at their 
own peril. Similarly, mathematics educators must ask, what frameworks or insights from other 
fi elds (for example, anthropology, or studies of organizational behavior) does mathematics 
education ignore at its own peril? There is, thus, the need for great breadth.

Issue 2: The dangers of superfi ciality

Breadth may be essential, as argued immediately above, but there is a signifi cant breadth-ver-
sus-depth tradeoff. Expertise comes with focus (which takes time and energy), and the danger 
of a lack of focus is either dilettantism or superfi ciality. A case in point is discussed by Heath 
(1999), a linguist who points to the problem of researchers in education using methods from 
other fi elds without really understanding them. For example, Heath discusses “discourse 
analysis”—which, in educational research, often seems to mean “making sense of what people 
say by whatever ad hoc methods seem appropriate.” Heath notes that there are more than a 
half dozen different schools of discourse analysis, each with its own traditions, history, and 
methods. Moreover, each type makes particular kinds of contributions, takes a fair amount of 
time to master, and should not be used cavalierly by amateurs. Educational researchers who 
call their ad hoc attempts to make sense of dialogue “discourse analysis” are abusing the term. 
That, of course, is but one example. In mathematics education, one could point to the cavalier 
use of “clinical interviews,” “protocol analysis,” and other methods. 

Do we need such methods? The answer is a clear yes—more so as time goes on. But those 
who employ such methods need to be well enough steeped in them to use them with wisdom, 
and skill. This implies focus and depth.

Issue 3: The relationship between research and practice

In Pasteur’s Quadrant: Basic Science and Technical Innovation, Donald Stokes (1997) dis-
cusses tensions between theory and applications in science and technology. Stokes argues that 
in both our folk and scientifi c cultures, basic and applied research are viewed as being in ten-
sion. For most, applications would seem the raison d’être of science. Stokes points out, how-
ever, that in elite circles, “pure” science has been considered far superior to its applications. A 
quote from C. P. Snow’s essay on “the two cultures” describes how scientists at Cambridge 
felt about their work: “We prided ourselves that the science that we were doing could not, 
in any conceivable circumstances, have any practical use. The more fi rmly one could make 
the claim, the more superior one felt.” (Recall G. H. Hardy’s famous (1967) quote: “I have 
never done anything ‘useful’…. The case for my life [is] … that I have added something to 
knowledge.”) 

This perspective was reifi ed by Vannevar Bush, who was asked by President Franklin Del-
ano Roosevelt to map out a plan for post-World War II scientifi c research and development. 
Bush’s report, Science, the Endless Frontier, ultimately provided the philosophical underpin-
nings of the U. S. National Science Foundation (NSF).

Echoing Snow, Bush wrote that “basic research is performed without thought of practical 
ends” and that its defi ning characteristic is “its contribution to ‘general’ knowledge and an 
understanding of nature and its laws.” He went on to say that if one tries to mix basic and 
applied work, that “applied research invariably drives out pure.” Federal funding should sup-
port basic work, he argued; out of that basic work would come a broad range of applications. 
The tension between basic and applied work is represented in Figure 19.1. 

Basic
R esearch

A pplied
R esearch

Figure 19.1 Basic and applied research seen as polar opposites.
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A hypothesized progression from basic research to use-in-practice is represented in Figure 
19.2.

One can point to researchers whose work fi ts cleanly at various points in the spectrum illus-
trated in Figure 19.1—paradigmatic examples being Niels Bohr and Thomas Edison. Bohr’s 
work on the structure of the atom was conducted without thought of applications; in con-
trast, Edison disdained theory while pouring his energy into “electrifying” the United States. 
You can imagine Bohr situated on the far left of Figure 19.1, and Edison on the far right.

But what about Louis Pasteur?
Pasteur’s work in elaborating biological mechanisms at the microbiological level—working 

out the “germ theory of disease”—is as basic as you can get. But, Pasteur did not engage in 
this activity solely for reasons of abstract intellectual interest. He was motivated by problems 
of spoilage in beer, wine, and milk, and the hope of preventing and/or curing diseases such 
as anthrax, cholera, rabies, and tuberculosis.

At what point on the spectrum in Figure 19.1 should one place Pasteur? Do we split him 
in half, with 50% at each end of the spectrum? Or should one “average” his contributions, 
placing him in the middle? Neither does him justice.

Stokes resolves this dilemma by disentangling these two aspects of Pasteur’s work, consid-
ering basic knowledge and utility as separate dimensions of research. He offers the scheme 
given in Figure 19.3.

Pasteur has a home in this scheme—and moreover, considerations of use and the quest for 
fundamental understanding are seen as living in potential synergy. Note that this conceptual-
ization destroys the linearity of the hypothetical scheme in Figure 19.2: there are times when 

Basic
R esearch

A pplied
R esearch

D evel opment

U se in
Practice

Figure 19.2 The progression from research to use (after Stokes, 1997, p. 10).
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Figure 19.3 A two-dimensional representation of “basic” and “applied” considerations for research (Stokes, 
1977, p. 73).
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“basic” work can be done (indeed, may need to be done) in applied contexts. Fundamental 
research does not necessarily take place before, or in contexts apart from, those of practical 
use. 

This perspective, elaborated by Stokes in the case of science, applies equally well to educa-
tional research. The idea, simply stated, is that a signifi cant proportion of educational research 
can now be carried out in “real” contexts.4 The careful study of “design experiments” or other 
educational interventions can reveal important basic information, about mathematical think-
ing, teaching, and learning.

This statement, however, raises profound questions for the conduct of research. Issues of 
how to make sense of “real world phenomena,” and how to justify the claims one makes, are 
thorny indeed. Mathematics education in particular, and educational research in general, have 
yet to grapple adequately with methods and standards for making and judging such claims.

Issue 4: On knowing where you are and where you are going

One point that is made repeatedly in this chapter is that, whether or not researchers 
believe that they have theoretical perspectives and biases, they do. (Researchers who 
think otherwise are like the proverbial fi sh who are unaware of the medium in which 
they swim.) This observation is critically important, for one’s framing assumptions 
shape what one will attend to in research. They also, needless to say, affect the scope 
and robustness of one’s fi ndings. Sections IV and V of this chapter will address these 
issues at some length.

The second point that needs to be made here is more subtle, and is easily misinterpreted. 
That is: research methods are best chosen when one has some idea of what it is one is looking 
for. A research method is a lens through which some set of phenomena is viewed. A lens may 
bring some phenomena sharply into focus. But it may also blur others at the same time, and 
perhaps even create artifactual or illusory images. Moreover, to continue the metaphor, dif-
ferent lenses are appropriate for different purposes—the same individual may use one set of 
glasses for close-up work, one for regular distance, and complex devices such as telescopes for 
very long-distance work. So it is with methods: the phenomena we wish to “see” should affect 
our choice of method, and the choice of method will, in turn, affect what we are capable of 
seeing. And, of course, the kinds of claims one will be able to make (convincingly) will depend 
very much on the methods that have been employed.

Thus, researchers should be very much aware of the following questions, and the answers 
they propose to them:

What theoretical perspective undergirds the work?
What questions are being asked? What kinds of claims does one expect to make?
What methods are appropriate to address these questions?
What kinds of warrants do these methods provide in substantiation of the (potential) 
claims to be made?

These questions are essentially independent of the nature of one’s work—that is, they apply 
equally well to naturalistic research intended to provide “rich, thick descriptions,” to experi-
mental methods employing statistical analyses, or to the construction of “models” represent-
ing various phenomena. If the researcher does not have good answers to them, there is a good 
chance the research will be seriously fl awed.

It is essential to stress that not all decisions about methods must be made beforehand; 
the claims above are not intended to be either reductivist or positivist. Research is a dialec-
tic process in which researchers come to grips with phenomena by living with them, and 
understandings evolve over time. One can point to numerous studies in which important 
phenomena emerged mid-stream. Indeed, longstanding notions such as “grounded theory” 

•
•
•
•
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and  methodological tools such as the “constant comparative method” (see Glaser & Strauss, 
1967) serve as codifi cations of the fact that sense-making is an inductive process. The same 
is true of work that includes signifi cant quantitative components: in “design experiments” 
(see, e.g., Brown, 1992) and various teaching interventions (see, e.g., Ball & Lampert, 1999; 
Schauble & Glaser, 1996), a great deal of data are gathered, and then sifting and winnowing 
processes takes place. What is essential to understand, however, is that the sifting and win-
nowing are done with the purpose of answering specifi c (perhaps emergent) questions. If the 
question isn’t clear by the end of the process, the answer isn’t likely to be either.

Issue 5: What is believable and why?

This, of course, is the key question the fi eld faces with regard to methods. It is, alas, all too 
infrequently addressed. One could hardly hope to answer the question in a chapter of this 
nature—but, one can hope to bring it to the forefront and clarify aspects of it. Most of the 
balance of this chapter (Sections IV, V, and VI) is devoted, directly or indirectly, to that 
enterprise.

IV. A VIEW OF THE RESEARCH PROCESS AND ITS IMPLICATIONS

In Section II of this chapter I noted that, especially in the decades following World War II, 
there was extensive use of experimental methods in education—and afterwards, the recogni-
tion that such methods had not produced much of lasting value. Partly as a result of those 
problems, such methods (modeled on those in the physical and biological sciences) had fallen 
out of favor; however, the “gold standard” of randomized controlled trials is now being urged 
upon educational researchers once again. It is worth reconsidering the issue of experimental 
methods, to better understand why they have contributed so little thus far and to insure that 
when they are used, they are used correctly. The reasons for doing so are not merely historical 
(although post mortems often reveal interesting and useful information) or prescriptive. The 
fact is that many of the problems that plagued experimental studies also have the potential to 
weaken or negate the value of studies that employ non-experimental research methods. And, 
those who do not learn from the mistakes of the past are doomed to repeat them.

This section of the chapter begins with a description of a conceptual framework within 
which one can examine the use of experimental methods. The framework is employed to 
highlight potential diffi culties with such methods—places where the work can be undermined 
if researchers are not appropriately careful. The framework is then expanded and modifi ed so 
that it applies to non-experimental methods as well. This will set the stage for later discussions 
(Section VI) regarding the trustworthiness and robustness of educational research fi ndings.

The use of statistical/experimental methods is a form of modeling. A simple diagram (see 
Figure 19.4 below) and discussion, taken from Schoenfeld, 1994, highlight some of the issues 
involved in the use of such models.

It should be noted that statistical tests are conducted under the assumption that the “real 
world” situations being considered conform to the conditions of specifi c statistical models; if 
they do not, the conclusions drawn are invalid. When the experimental conditions do match 
those of the statistical model, it is then assumed that the results of statistical analyses con-
ducted provide valid interpretations of the real world situations. This is represented by the 
dashed arrow at the bottom of Figure 19.4.

The essential point to keep in mind when applying statistical models is that they, like any 
other models, are representations of particular situations—and the usefulness of the model 
will depend on the fi delity of the representation. The effective use of statistical or other mod-
eling techniques to shed light on a real-world situation depends on the accuracy of all three 
mappings illustrated in Figure 19.4: (1) the abstraction of aspects of the situation into the 



Research methods in (mathematics) education 481

model, (2) the mathematical analysis within that model, and (3) the mapping of interpreta-
tions back into the situation. Even if the manipulations performed within the formal system 
(e.g., calculations of statistical signifi cance) are correct, there is no guarantee that the inter-
pretation of the results obtained in the formal system will accurately refl ect aspects of the 
real-world system from which the model was abstracted.

There are numerous places where these mappings can break down. For example, statistical 
signifi cance means nothing if the conditions under which experimentation is done do not 
conform to the assumptions of the model underlying the development of the statistics; and 
it means little if the constructs being examined are ill-defi ned. Although researchers adopted 
the language of “treatments” and “variables,” the objects they so named often failed to have 
the requisite properties: ofttimes, for example, an instructional “treatment” was not a uni-
valent entity but was very different in the hands of two different experimenters or teachers. 
Similarly, if an instructional experiment used different teachers for the treatment and control 
groups, then teacher variation (rather than the instructional treatments) might account for 
observed differences; if the same teacher taught both groups, there still might be a difference 
in enthusiasm, or in student selection. In short, many factors other than the ones in the sta-
tistical model—the variables of record—could and often did account for important aspects of 
the situation being modeled (Schoenfeld, 1994, pp. 700–701).

With some expansion, the scheme given in Figure 19.4 can be modifi ed into a scheme that 
applies to all observational and experimental work, whether that work is qualitative or quan-
titative in nature. See Figure 19.5.5

The fi rst main change from Figure 19.4 to Figure 19.5 is the explicit recognition (seen 
along the vertical dimension) that “reality” is never abstracted directly. There is, of course, 
the fact that humans do not perceive reality directly: we interpret our sensory images of the 
world through conscious or unconscious fi ltering mechanisms. More to the point, however, 
is the fact that any act of codifying (our perceptions of) the real world represents an act of 
selection, and thus of theoretical commitment. Whatever perspective the analyst adopts, some 
things are highlighted and some are downplayed or ignored. This set of choices —the set of 
entities and relationships selected for analysis—will be called the analyst’s conceptual model. It 
indicates what “counts,” from the analyst’s perspective. 

The second main change is the expansion from experimental methods to general analytic 
methods. When one employs classical statistical/experimental methods, one typically  performs 

A Real-World
Situation

The Real-World
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Steps 1, 2, and 3 combined yield an analysis of the real-world
situation. Note that the quality of the analysis depends on the
mappings to and from the formal system (steps 1 and 3). If either
one of those mappings is flawed, the analysis is not valid.

Figure 19.4
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standard statistical manipulations (t- or z-tests, factor analyses, etc.) under the assumption 
that the data gathered conform to the conditions of some formal statistical model. In “treat-
ment A versus treatment B” comparison tests, for example, one gathers relevant data such as 
the scores of the two treatment groups on some outcome measure. These are data points in a 
formal statistical model (the upper left-hand corner of Figure 19.4). The data are analyzed in 
accord with the conditions of the model (arrow 2 in Figure 19.4). If the results are deemed 
statistically signifi cant, the researcher typically draws the inference that the (signifi cant) dif-
ference in performance can be attributed to the difference in the two treatments.

That situation can be abstracted as follows (see the top section of Figure 19.5). Virtually 
any record of occurrences can be considered “data.” (The reliability and utility of such data 
are an issue, of course.) Such records may, for example, be fi eld notes of anthropological 
observations; audio- or videotapes of a classroom, or of one or more people engaged in prob-
lem solving; interview transcripts, or just about any permanent record of events. This record 
(which already represents a fi ltering of events through the researcher’s conceptual lens) is then 
represented in some way for purposes of analysis. Videotapes may be coded for gestures, or for 
the nature and kind of interactions between people. Field notes and interview transcripts may 
be annotated and categorized. Then, the analyst pores over the data. There are myriad ways to 
do so, of course. Coded data may be analyzed statistically, as in the “process-product” para-
digm, where the independent variables were typically tallies of specifi c classroom behaviors by 
teachers and dependent variables were measures of student performance on various tests (see, 
e.g., Brophy & Good, 1986; Evertson, Emmer, & Brophy, 1980). Statistical analyses may be 
integrated with observational data, as in The AAUW Report: How Schools Shortchange Girls 
(1992) or Boaler (2002). Patterns of behavior may be “captured” in a model, as in Schoenfeld 
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Figure 19.5 A schematic representation of the analytic process in general.



Research methods in (mathematics) education 483

(1998). Or, patterns of observations and other data may be woven together in a narrative, as 
in Eisenhart, Borko, Underhill, Brown, Jones, and Agard (1993). No matter what the form, 
the point is that inferences are drawn, within a conceptual framework, on the basis of data 
captured in a representational system. Following such analyses, the researchers map their fi nd-
ings back to (their interpretation of) the phenomena they are investigating.

Seen from this perspective, all instances of interpretation and analysis—quantitative and 
qualitative alike—are seen to be similar in some fundamental ways. The interpretive path-
way begins with the (conscious or unconscious) imposition of an interpretive framework. It 
continues with the selection and representation of data considered relevant to the question at 
hand, and the interpretation of those data within the conceptual and representational frame-
work. The interpretation is then mapped back to the real world, as an explanation/interpreta-
tion of the phenomena at hand.

Having established this general framework, I would now like to point to some of the dif-
fi culties involved in traversing the pathways indicated in Figure 19.5. Those diffi culties point 
to potential pitfalls in quantitative and qualitative studies alike. 

Along the fi rst arrow: Focal choices refl ect (perhaps implicit) theoretical commitments

The fi rst and perhaps most fundamental point that must be recognized in the conduct of 
educational research is that what researchers see in complex real world settings is not objec-
tive reality but a complex function of their beliefs and understandings. In any setting, infi -
nitely many things might catch one’s interest. Where one’s attention settles is shaped by what 
one believes is important and by what one is prepared to see. Take, for example, the ques-
tion of “what counts” in mathematical understanding. For the behaviorist/associationist, 
the central issue in mathematics learning is the effi cacy with which one masters standard 
procedures; understanding was defi ned to mean “performing the procedures well.” From 
this point of view, Clapp’s 1926 study of students performing a total of 3,862,332 arithme-
tic sums, described in the previous section, makes perfect sense. Indeed, from the radical 
behaviorist’s point of view, any invocation of mental processes above and beyond the strength 
of “bonds” developed by repeated practice was nonsense. In contrast, the Gestaltist Wert-
heimer looked for signs of structural understanding. Where traditionalists saw arithmetic 
competence, Wertheimer (1945) saw “blind, piecemeal habits … tendencies to perform slav-
ishly instead of thinking.” Or, consider an event such as an hour’s mathematics lesson. From 
the “process-product” perspective (see, e.g., Brophy & Good, 1986), what counts are teacher 
behaviors and student performance on various outcome measures; other aspects of classroom 
interactions might be ignored. From the situative perspective, a central issue may be the joint 
construction of mathematical meaning in the classroom, through discourse (Greeno et al., 
1998). From a cultural perspective, one might focus on the typicality of certain instruc-
tional practices within and across nations (Stigler & Hiebert, 1999). From a microsociologi-
cal perspective (see, e.g., Bauersfeld, 1995), one might focus on the nature of the classroom 
culture and the role of language in the classroom as a “medium between person and world.” 
Researchers viewing the same phenomena from within these different traditions might attend 
to, and “see,” very different things. The analytic frames they then construct—the conceptual 
models in Figure 19.5—will then differ widely. See, for example, Sfard & McClain, 2002: dif-
ferent researchers see very different focal phenomena in the same video record of a classroom. 
See also Schoenfeld (in press), in which there are four complementary analyses of a classroom 
interaction. One analysis focuses on the nature of the work a teacher must do to orchestrate 
productive mathematics learning; one on teachers’ decision making; one on a particularly 
productive discourse structure, and one on equity issues. A major analytic challenge is to 
build frameworks that allow researchers to converge on similar or synergistic fi ndings when 
focusing on such data (see, e.g., Sherin & Sherin, in press).



484 Alan H. Schoenfeld

Along the second arrow: Do the data, as represented, refl ect the 
constructs of importance in the conceptual model?

Perhaps the most accessible cases in point regarding this issue come from the statistical and 
experimental paradigms. As noted in Section II, “treatment A versus treatment B” compari-
sons are meaningless if the treatments are ill-defi ned (e.g., the case of “advance organizers”), 
or if the ostensible “independent variables” in an experiment are not the only variables that 
affect performance on the outcome variables. Moreover, very different interpretations can 
result depending on what one takes as relevant. How, for example, does one represent “math-
ematical profi ciency” or “subject matter knowledge”? If one study comparing two curricula 
uses a test of basic skills as its outcome measure and another study uses a test that focuses on 
conceptual understanding and problem solving as its outcome measure, the studies could well 
report (apparently) contradictory fi ndings. 

The question of data representation is central in all paradigms. To start with an obvious 
point, fi eld notes are clearly selective—they represent the observers’ focus and biases. Less 
obvious but equally important, “objective” records such as videotapes also represent observ-
ers’ focus and biases. If there is one camera, where is it focused? On an individual, on a group? 
On the written work produced by individuals or groups, or on their faces as they talk? (With 
more than one camera, one can get more “coverage,” but issues of focus remain.) Given a vid-
eotape record, which occurrences get coded—and at what grain size—when the tape is ana-
lyzed? Compare, for example, the fi ne level of detail in the transcript coding scheme set forth 
by Lucas, Branca, Goldberg, Kantowsky, Kellogg, and Smith (1980) with the rather coarse-
grained coding scheme found in Schoenfeld (1985). Both schemes were aimed at under-
standing “problem solving.” Yet, by their very nature, they supported very different kinds 
of analyses. Or, compare the two transcripts of “Leona’s puppy story” by Sarah Michaels 
(pp. 241–244) and James Gee (pp. 244–246) in their discussion of discourse analysis (Gee, 
Michaels, & O’Connor, 1992). Michaels presents the story in narrative form, with a range of 
markers to indicate changes in pitch and intonation, timing, and more. False starts and repairs 
are included, in an attempt to capture a large part of the “spoken record” in written notation. 
In contrast, Gee strips such markers from the text. He presents a cleaned-up version in “stan-
zas,” as a narrative poem—an “ideal realization” of the text. Here too (and this is the point 
of the authors’ examples), two different transcripts of the same oral record support two very 
different types of analyses. The form of representation makes a difference.

In short, the constructs in the conceptual model may or may not be well defi ned, and 
the ways data are represented may or may not correspond in straightforward ways to those 
constructs. To pick an example from the social realm: “turn-taking” is easy to code, but cod-
ing “mathematical authority” and “social authority” (see, e.g., Cobb, 1995) is a much more 
delicate issue. The choices of what to code, and the accuracy, consistency, and grain size of the 
coding, will have a critical impact on the quality of the analysis. 

Along the third arrow: What’s meaningful within the representational 
scheme? What ban be said about the quality of the inferences drawn?

The third arrow asks the deceptively simple question, “What conclusions can be drawn within 
the given conceptual system, using the data as represented?”

Putting technical language aside for the moment, there are a series of common-sense ques-
tions that are natural to ask when someone proposes to make some judgments from a body of 
data. Those include the following:

Are there enough data on which to base a solid judgment?
Is the means of analysis consistent—that is., will anyone trained in the analytical methods 
draw the same conclusions from the same data?

•
•
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Does the data-gathering mechanism tap into stable phenomena—that is., will someone be 
likely to produce similar data when assessed at different times, and will their interpretation 
be consistent?

In terms of classical statistical methods, these questions are related to technical issues of sam-
pling, reliability, and validity. There is, of course, a huge body of statistical and psychometric 
theory and technique that addresses those issues. Unfortunately, however, the theoretical 
underpinnings and the conditions of application for those theories and techniques mesh 
very poorly with evolving epistemological understandings regarding theories of competence 
in subject matter domains. In days gone by, tests such as the U.S. National Assessment of 
Educational Progress (NAEP) simply used “content by diffi culty matrices,” where test items 
refl ected mastery of particular topics at various levels of diffi culty. Currently, the situation is 
very much more complex. Theories of mathematical understanding include aspects of com-
petence such as the ability to employ problem solving strategies, to employ self-regulatory 
skills effectively, and more. “Performance assessment” items may cross topic areas—a problem 
may be accessible to a solution via algebraic or geometric means, for example, or be solvable 
numerically or symbolically. Under such circumstances, standard psychometric techniques 
are woefully inadequate to provide knowledge profi les of students. New methods need to be 
developed (see, e.g., Glaser & Linn, 1997; Greeno, Pearson, & Schoenfeld, 1997). 

In terms of the broad spectrum of research methods available to (mathematics) educators 
today, the questions highlighted above are both fundamental and extremely diffi cult. Section 
V of this chapter is devoted to addressing such issues.

Along the fourth arrow: Are results derived in the representational 
system meaningful in the conceptual model?

Arrow 4 is the mirror image of arrow 2, completing the analytic loop within the conceptual 
model—the pathway from arrow 2 through arrow 4 represents the gathering, analysis, and 
interpretation of data, given the assumptions of the conceptual model. The main point here 
is that, no matter how fi ne the analysis within the representational system may be, the overall 
analysis is no better than the mapping to and from the conceptual model.

As one case in point, consider econometric analyses of school district expenditures vis-à-vis 
the effects of class size. Ofttimes precise data regarding actual class size are unavailable. In 
early studies, researchers used proxies for these input data—for example, the ratio of “instruc-
tional staff” to students in a district, or some fraction thereof. But such ratios had the poten-
tial to be tremendously misleading, because some districts’ fi gures included non-teaching 
administrators and some did not. As a result, the input variables had no consistent meaning. 
The output variables were often standardized tests of basic skills or other “achievement tests.” 
Typically, these tests were only marginally related to the actual curricula being taught—and 
thus were dubious measures of the effectiveness of instruction. In short, both input and 
output variables in many such studies were of questionable value. No matter how perfectly 
executed the statistical analyses on such data might be, the results are close to meaningless.

Within the standard statistical paradigms, there are also well known examples of “sam-
pling error”—one example of which was a mid-20th century telephone poll of voters in a 
U.S. presidential election. What the pollsters failed to realize was that telephones were not 
universal, and that by restricting their sample to people who owned telephones, they had seri-
ously biased the sample (and, indeed, made the wrong prediction). Much more recently, there 
is the fact that a large number of medical studies were conducted using only male patients. 
The samples were randomly drawn and the statistics were properly done; the fi ndings applied 
perfectly well to the male half of the population. The problem is that the fi ndings were also 
assumed—in many cases incorrectly—to apply to the female half of the population as well.

•
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Issues may be more subtle with regard to qualitative data, but they are there all the same. 
In the polling example just given, the poll was accurate for the population sampled, but not 
for the population at large. Similarly, some Piagetian fi ndings, which were once thought to be 
universal, were later seen to be typical of middle-class Swiss children but not of children who 
had very different backgrounds. Sampling error is every bit as dangerous a fl aw in qualitative 
as in quantitative research. 

The same is the case for issues of construct validity. In Piagetian clinical interviews, for 
example, children’s performance on certain (wonderfully clever) interview tasks was taken as 
evidence of the presence or absence of certain cognitive structures. Further studies revealed 
that although performance on certain tasks might be robust, the robustness was in part a 
function of the task design; other tasks aimed at the same mental constructs did not necessar-
ily produce the same results. In terms of Figure 19.5, the analysis within the representational 
system (performance on a set of tasks) was just fi ne, but the mapping back to the conceptual 
framework (the attribution of certain logico-deductive structures on the basis of the analyses) 
was questionable. The issues are hardly more straightforward when the constructs involved 
are things such as “power relationships” and “self-concept.”

Another example where construct validity is problematic is that of IQ. If IQ is defi ned 
by performance on various IQ tests, one obtains (relatively) consistent scores. But when one 
thinks of such scores as refl ecting “intelligence,” one opens a can of worms. Historically 
speaking, Binet thought of his tests as identifying places where people needed remediation—a 
somewhat questionable but defensible position. Later on, people took scores on IQ tests to 
represent the measure of an inherent (and immutable) capacity. That over-extension has been 
the cause of unending problems.

Along the fi fth arrow: How well do the constructs and relationships in the conceptual 
model map back into the corresponding attributes of the original situation?

It must be stressed that constructs that seem important in the representational system may or 
may not have much explanatory power—or even be meaningful—in the conceptual model (or 
the situation from which the model was abstracted). This can easily occur when the constructs 
in the model are arrived at statistically—for example, when they are produced by methods 
such as factor analysis. “Verbal ability” in mathematical performance is one case in point.

As we complete the circuit in Figure 19.5, it is worth recalling that the last arrow repre-
sents the completion of the representation and analysis process—and that the process involves 
working with selected and abstracted features of the situations they represent. Any use of a 
model or representation idealizes and represents a subset of the objects and relationships of the 
situation being characterized. The conceptual model may cohere, and analyses within it may 
be clear and precise—but the whole process is no better than any of the mappings involved, 
especially the mapping back into the original situation. All results must be interpreted with 
due caution, for they refl ect the assumptions made throughout the entire process.

One quantitative case in point was the use, in the 1960s and 1970s, of factor analyses to 
determine components of mathematical ability. Various tests were constructed to assess stu-
dents’ “verbal ability,” “spatial ability,” and more; then studies were done correlating such 
abilities with problem solving performance. Over time, however, it became clear that most 
such “abilities” were almost tautologically defi ned—that is, you had “verbal ability” to the 
degree that you scored well on tests of verbal ability. However, researchers were unable to 
explain how these abilities might actually contribute to competent performance.

If a whole fi eld could delude itself in this way, imagine how easy it is for a single researcher 
to do the same. Much qualitative research consists of the construction of categories to rep-
resent perceived patterns of data. The analytic perspective that one brings to one’s work may 
well shape what one sees or attends to—and thus which categories are constructed.
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As an indication of the universe of possibilities, LeCompte and Preissle (1993) distill 
“major theoretical perspectives in the social sciences” into a table that covers six pages of 
small-sized print (pp.128–133). Those perspectives, accompanied by a few of their major 
theoretical constructs, are: 

Functionalism (systems, functions, goals, latent and manifest functions, adaptation inte-
gration, values, cultural rules…)
Confl ict theory (many of the same concepts as functionalism, plus in addition: legitimacy, 
consciousness, domination, coercion…)
Symbolic interactionism and ethnomethodology (self, self-concept, mind, symbols, mean-
ing, interaction, role, actor, role taking…)
Critical theory (resistance, human agency, repression, hegemony, subjectivity, political 
economy, consciousness (false and true)…)
Ethnoscience or cognitive anthropology (cultural knowledge, cognitive processes, cogni-
tive models…)
Exchange theory (cost, benefi t, rationality, fair exchange, rewards, norms of reciprocity, 
satiation…)
Psychodynamic theory (id, ego, superego, culture and personality, neurosis, psychosis…)
Behaviorism (individual differences, stimulus, response, conditioning…)

Given this extraordinary diversity of perspectives and constructs, one must ask: how 
can the fi eld sort out which ones make sense; which perspectives are relevant and 
appropriate to apply in which conditions; and, how much faith can one put in any 
perspective or claim? These questions are the focus of Section V.

V. STANDARDS FOR JUDGING THEORIES, 
MODELS, AND RESULTS6

Given the wide range of perspectives, methods and results in educational research, the follow-
ing questions are essential to address. What grounds should be offered in favor of a general 
theory, or a model of a particular phenomenon? How much faith should one have in any par-
ticular result? What constitutes solid reason, what constitutes “evidence beyond a reasonable 
doubt”?

The following list puts forth a set of criteria that can be used for evaluating models and 
theories (and more generally, any empirical or theoretical work) in mathematics education:

Descriptive power
Explanatory power
Scope
Predictive power
Rigor and specifi city 
Falsifi ability
Replicability, generality, and trustworthiness
Multiple sources of evidence (triangulation)

Each is briefl y described in this section. In the next section, these criteria will be invoked 
when various types of research are considered. 

Descriptive power

Descriptive power denotes the capacity of theories or models to capture “what counts” in ways 
that seem faithful to the phenomena being described. As Gaea Leinhardt (1998) has pointed 
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out, the phrase “consider a spherical cow” might be appropriate when physicists are consider-
ing the cow in terms of its gravitational mass—but not when one is exploring some of the 
cow’s physiological properties.

Simply put: Theories of mind, problem solving, or teaching (for example) should include 
relevant and important aspects of thinking, problem solving, and teaching, respectively; they 
should capture things that “count” in reasonable ways. At a very broad level, it is fair to ask: 
Do the elements of the theory correspond to things that seem reasonable? And, is anything 
missing? For example, in the 1970s and 1980s researchers designed a fair number of data 
coding schemes, to “capture” the actions taken by people as they tried to solve mathematics 
problems (see Lucas, Branca, Goldberg, Kantowsky, Kellogg, & Smith, 1980, for one such 
example), or to capture classroom actions (see, e.g., Beeby, Burkhardt, & Fraser, 1979). Here 
is one test of its descriptive power. Suppose you study the coding scheme and become profi -
cient at its use. Suppose further that someone else profi cient in the use of the scheme makes 
a videotape of the relevant phenomenon, and then codes it according to the scheme. You are 
given the coding, which you examine. Then, when you look at the videotape, are there any 
“surprises”—relevant behaviors or actions that the coding scheme did not prepare you to see? 
If so, there is reason to question the descriptive adequacy of the scheme.

More broadly, there is the question of whether an analytic scheme or representation takes 
the right factors into account. Suppose someone analyzes a problem solving session, an inter-
view, or a classroom lesson. Would another person who read the analysis and then saw the vid-
eotape, reasonably be surprised by things that were missing from the analysis? This might call 
into question the theoretical underpinnings of the approach. To take an historical example, 
consider the “process-product” approach, a once-dominant paradigm in studies of teaching 
(Brophy & Good, 1986). Researchers coded classroom behaviors (amount of time on task, 
frequency of direct questions asked of students, etc.) and then explored correlations between 
the extent of those behaviors and measures of student success, such as scores on standard-
ized tests. Curiously absent from such studies (and easy to see in hindsight, though not at all 
apparent at the time) were what we now consider relevant cognitive considerations: What did 
it really mean to understand the mathematics? How was it explained? What content did the 
teacher and students focus on? How did the study of the relevant mathematical processes play 
out in the classroom, and how was it represented on the tests? With 20-20 hindsight we can 
see such omissions in methods of the recent past. We need to keep our eyes open for similar 
lapses in our current work.

Explanatory power

Explanatory power denotes the degree of explanation provided regarding how and why things 
work. It is one thing to say that people will or will not be able to do certain kinds of tasks, 
or even to describe what they do on a blow-by-blow basis; it is quite another thing to explain 
why. Consider, for example, the kinds of fi nely detailed coding schemes for problem solving 
behavior (Lucas et al., 1980) discussed above. They provided a wealth of detail regarding 
what the subjects did (along specifi c dimensions), but little relevant information regarding 
how and why the subjects were ultimately successful (or not) at solving the problems. Likewise 
for the process-product paradigm: “classroom processes” were hypothesized to be related to 
“learning” and “performance outcomes,” but the mechanisms by which they were related 
went unexamined.

There are at present many alternative forms of explanation and descriptions of mechanism; 
the fi eld will need to sort these out, over time. Cognitive explanations tend to focus on “what 
goes on in the head,” at some level of detail. It is one thing, for example, to say that people 
will have diffi culty multiplying two three-digit numbers in their heads. But that does not 
provide information about how and why the diffi culties occur. A typical cognitive explanation 
would focus on a description of working memory. It would provide a description of memory 



Research methods in (mathematics) education 489

buffers, a detailed explanation of the mechanism of “chunking,” and the careful delineation 
of how the components of memory interact with each other. Such explanations work at a 
level of mechanism: they say in reasonably precise terms what the objects in the theory are, 
how they are related, and why some things will be possible and some not. Similarly, socio-
culturally and anthropologically oriented research aimed at explaining what takes place in 
classrooms focuses on describing how and why things happen the way they do. There are, of 
course, myriad ways to do this. For example, Bauersfeld’s (1980) article “Hidden dimensions 
in the so-called reality of the classroom” provides an alternative perspective on classroom 
events, elaborating on the “hidden agendas” of students and teachers. Boaler’s (2002) study 
of reform and traditional instruction traces the impact of alternative classroom practices on 
students’ performance and hypothesizes mechanisms to account for the very different pat-
terns of gender-related performance in the two instructional contexts. Stigler and Hiebert 
(1999) provide coherent explanations for what might seem incidental or inexplicable phenom-
ena. (For example, why is it that overhead projectors (OHPs), which are widely used in the 
United States, are rarely found in Japanese classrooms? After all, such technologies are easily 
accessible in Japan. The answer has to do with lesson coherence. OHPs are devices for focus-
ing students’ attention. As such, they fi t in wonderfully with typical instructional patterns in 
the United States—they support teachers in saying “here is what you should be attending to, 
now!” A major goal of Japanese lessons, however, is to provide students with a coherent record 
of an unfolding story, refl ecting the evolution of the lesson as a whole. Japanese teachers tend 
to make careful use of the entire white- or chalk-board, providing a cumulative record of how 
a whole lesson unfolds. The OHP, with its limited focus and ephemeral nature, is not suitable 
for this purpose.) 

Scope

Scope denotes the range of phenomena covered by the theory. A theory of equations is not 
very impressive if it deals only with linear equations. Likewise, a theory of teaching is not very 
impressive if it covers only straight lectures.

One reason that there is currently so much theoretical confusion is that adherents of one 
approach or another rarely delineate the set of phenomena to which their theories apply, and 
to which they do not. Buswell made this point a half-century ago:

The very reason that there are confl icting theories of learning is that some theories seem 
to afford a better explanation of certain aspects or types of learning, while other theories 
stress the application of pertinent evidence or accepted principles to other aspects and 
types of learning. It should be remembered that the factual data on which all theories 
must be based are the same and equally accessible to all psychologists. Theories grow and 
are popularized because of their particular value in explaining the facts, but they are not 
always applied with equal emphasis to the whole range of facts. (Buswell, 1951, p. 144)

When he wrote, Buswell was explaining that behaviorism explained some things well (and still 
does) while not being of much use with regard to some other phenomena; likewise for “fi eld 
theories” such as Gestaltism. But the point is general. And research will only make progress if 
researchers take care to specify what a theory (or a model, or piece of research) actually does, 
and does not.

One case in point is the Teacher Model Group’s work studying teachers’ in-the-moment 
decision-making in the classroom, called a “theory of teaching-in-context” (Schoenfeld, 1998, 
1999c, 2002b). The goal of that research is to provide an explanation of every decision made 
by a teacher while engaged in the act of teaching, as a function of the teacher’s knowledge, 
goals, and beliefs. This is ambitious, and the work is carried out at a very fi ne-grained level of 
detail. At the same time, the constraints of the theory and its associated models of teachers 
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are carefully spelled out. It is not a theory of teaching (writ large), or a theory of “what hap-
pens in the classroom.” For example, the theory provides a view of “classroom reality” only as 
seen from the teacher’s point of view—each student’s view will certainly differ, and that of an 
observer focusing on the class as a “dynamic entity” will differ as well. External constraints 
(e.g., the politics of schooling) are not modeled directly, although the teacher’s perception of 
them is included as part of the model. Changes in the teacher (i.e., learning as a function of 
experience) are not modeled: the way the model works is that the teacher’s understandings are 
modeled at the beginning of a lesson, and serve as the basis for the analysis that follows. That 
is, given what we know about the teacher (including his or her history with the students and 
understandings of them, understanding of content, etc.) right now, here is how he or she is 
likely to react to the “next” thing students do. In short, the research group has taken pains to 
specify what the theory of teaching-in-context does, and what it does not. It can then be held 
accountable (according to some of the criteria enunciated in this section) for the adequacy 
with which it addresses the phenomena it claims to address.

Predictive power

“Prediction” in education and the social sciences is a touchy business. Claiming to have a 
model of some form of behavior, or a model of an individual (e.g., modeling someone’s teach-
ing) is likely to raise hackles almost immediately. A typical reaction is, “People are individuals, 
they have free will, they make on-the-fl y decisions; how can you possibly predict what they’ll 
do?” And of course, one can’t—in the sense of saying precisely how someone will act in any 
situation. The very idea of suggesting that one can predict someone’s actions seems reductive 
and dehumanizing. Yet, prediction is possible and important, if not essential.

For those in the sciences, prediction is a sine qua non of theory. Most theories in math-
ematics and the sciences allow for predictions of the type, “In certain circumstances, when 
X happens, then Y happens.” Of course, “Y happens” can take various forms. The kinds of 
predictions that make people nervous when they think about predictions of human behavior 
are those like the defi nitive predictions from classical mechanics (specifying the motion of 
particles subjected to specifi c forces) and chemistry (specifying the precise amount of radio-
active decay, or the precise substances and quantities that will emerge from a chemical reac-
tion). There are many other forms of prediction, however. Consider, for example, models 
of predator-prey relationships. Once the initial assumptions are fed into a model, the model 
predicts the change of the populations relative to each other. Such models predict very specifi c 
trends (with numbers attached), and the accuracy of the predictions can be measured against 
the actual populations of predators and prey. Predictions may be in the form of statistical 
distributions, as in the case of Mendelian genetics. In this case, evaluation of the predictions 
is easy: does the population of offspring have the distribution that the theory predicts? In 
other cases, predictions can be converted into statistical or probability distributions. Weather 
forecasting also gives rise to statistical distributions. The question is: over time, what per cent 
of the time did it rain, on those days when the forecaster said there was a (say) 30% chance of 
rain? Also, predictions may be in the form of constraints—statements of what is possible or 
impossible. Evolutionary theory is a case in point. Whatever evolutionary theory is proposed 
must apply not only to known data but to previously unexamined fossil records as well. That 
is, the theory predicts what properties sequences of fossils in geological strata can or cannot 
have. A cumulative fossil record consistent with the theory is taken as substantiation for the 
theory—and any discrepant fossil record that is discovered will be considered very problematic 
for it. In short, even theories such as evolution, which are anything but deterministic, support 
strong predictions. The question for educational studies is, what kinds of predictions does a 
proposed theory support?

Sometimes it is possible to make precise predictions. For example, Brown and Burton 
(1978) studied the kinds of incorrect understandings that students develop when learning 
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the standard U.S. algorithm for base 10 subtraction. They hypothesized very specifi c mental 
constructions on the part of students—the idea being that students did not simply fail to 
master the standard algorithm, but rather that students often developed one of a large class 
of incorrect variants of the algorithm (“bugs”), and applied it consistently. Brown and Bur-
ton developed a simple diagnostic test with the property that a student’s pattern of incorrect 
answers suggested the false algorithm he or she might be using. About half of the time, they 
were then able to predict the specifi c incorrect answer that a student would obtain to a new 
problem, before the student worked the problem.

Such fi ne-grained and consistent predictions on the basis of something as simple as a diag-
nostic test are extremely rare, of course. For example, no theory of teaching can predict 
precisely what a teacher will do in various circumstances; human behavior is just not that pre-
dictable. However, a theory of teaching, or a model of a particular teacher, can make specifi c 
predictions of the kinds just discussed. It can suggest constraints (“in these circumstances, 
this teacher will not do the following…”), and it can suggest likely events (“Given this chain 
of events, there is a 70% chance the teacher will respond in the following way, and a 30% 
chance the teacher will respond this way instead”). Such predictions can be made without 
being either reductive or dehumanizing.

It should also be noted that making predictions is a very powerful tool in theory refi ne-
ment. When something is claimed to be impossible and it happens, or when a theory makes 
repeated claims that something is very likely and it does not occur, then the theory has seri-
ous problems! Thus, engaging in such predictions is an important methodological tool, even 
when it is understood that precise prediction is impossible.

Rigor and specifi city 

Constructing a theory or a model involves the specifi cation of a set of objects and relation-
ships among them. This set of abstract objects and relationships supposedly corresponds to 
some set of objects and relationships in the real world. The relevant questions are: 

How well defi ned are the terms? Would you know one if you saw one—in real life, in the 
model? How well defi ned are the relationships among them? And, how well do the objects and 
relations in the model correspond to the things they are supposed to represent? Of course, one 
cannot necessarily expect the same kinds of correspondences between parts of the model and 
real-world objects as in the case of simple physical models. Mental and social constructs such 
as “memory buffers” and the “didactical contract” (the idea that teachers and students enter 
a classroom with implicit understandings regarding the norms for their interactions, and that 
these understandings shape the ways they act) are not inspectable or measurable in the ways 
physical objects are. But, we can ask for detail, both in what the objects are and in how they 
fi t together. Are the relationships and changes among them carefully defi ned, or does “magic 
happen” somewhere along the way? Here is a rough analogy. For much of the eighteenth 
century the phlogiston theory of combustion—which posited that in all fl ammable materials 
there is a colorless, odorless, weightless, tasteless substance called “phlogiston” liberated dur-
ing combustion—was widely accepted. (Lavoisier’s work on combustion ultimately refuted 
the theory.) With a little hand waving, the phlogiston theory explained a reasonable range of 
phenomena. One might have continued using it, just as theorists might have continued build-
ing epicycles upon epicycles in a theory of circular orbits.7 The theory might have continued 
to produce some useful results, good enough “for all practical purposes.” That may be fi ne for 
practice, but it is problematic with regard to theory. Just as in the physical sciences, researchers 
in education have an intellectual obligation to push for greater clarity and specifi city, and to 
look for limiting cases or counterexamples, to see where the theoretical ideas break down. 

Here are some quick examples. The model of the teaching process constructed by the 
Teacher Model Group (Schoenfeld, 1998, 1999c, 2000a, 2002a, in press) includes compo-
nents that represent aspects of the teacher’s knowledge, goals, beliefs, and decision-making. 
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Skeptics (including the authors) should ask, how clear is the representation? Once terms are 
defi ned in the model (i.e., once a teacher’s knowledge, goals, and beliefs are described) is 
there hand-waving when claims are made regarding what the teacher might do in specifi c 
circumstances, or is the model well enough defi ned so that others could “run” it and make 
the same predictions? These criteria—are the objects and relations in the model well speci-
fi ed, and is the correspondence between those entities and the entities they are supposed to 
represent clearly delineated? —should be applied whenever researchers claim to have a model 
of some phenomenon. For example, Lesh and Kelley (2000) claim that there are three levels 
of models in their three-tiered teaching experiments—models created by students, teachers, 
and researchers. Are the models specifi ed and inspectable? Similarly, “APOS theory” (see 
Asiala, Brown, de Vries, Dubinsky, Mathews, & Thomas, 1996) uses terms such as Action, 
Process, Object, and Schema. Would you know one if you met one? Are they well defi ned? 
Are the ways in which they interact or become transformed well specifi ed? In all these cases, 
the bottom line issues are, “What are the odds that the so-called theory or model is a phlogis-
ton-like theory or model? Are the people employing the theory constantly testing it, in order 
to fi nd out?” Similar questions should be asked about all of the terms used in educational 
research, e.g., the “didactical contract,” “metacognition,” “concept image,” and “epistemo-
logical obstacles.” They should be applied to all of the theoretical constructs in the long list 
that ended Section IV. (In the biased view of this author, many if not most of the constructs 
fail the test. We have our work cut out for us.)

Falsifi ability

The need for falsifi ability—for making non-tautological claims or predictions whose accuracy 
can be tested empirically—should be clear at this point. Simply put: if you can’t be proven 
wrong, you don’t have a theory.8,9 A fi eld makes progress (and guards against tautologies) by 
putting its ideas on the line.

Replicability, generality, and trustworthiness

Replicability, like prediction, is controversial. It should be, if one takes the spirit and meaning 
of replicability from the experimental sciences: if one does “exactly the same thing,” will the 
same results occur? Given the variability of people and contexts, that strict notion of replica-
bility is rarely appropriate for educational research. Moreover, one should not expect many 
educational studies to be replicable—there is a wide range of studies that deepen our under-
standings without making general claims. For example, biographical studies may help readers 
understand how certain forces shaped the lives of certain individuals, without claiming that 
others would necessarily act in the same way. Studies of how attempts at “reform” played out 
in various school districts are similarly not replicable: readers may derive important lessons 
from them, but there is no expectation that similar attempts at reform in similar school dis-
tricts will necessarily play out in the same ways. Likewise, some studies of teaching may have 
the primary value of enhancing readers’ understandings of the subtleties and complexities 
of teachers’ classroom actions and what drive them. Cooney’s (1985) study of “Fred” shows 
how a teacher can avow the importance of teaching for problem solving but come to teach in 
a very traditional way. Cooney presents evidence that Fred, despite his rhetorical homage to 
Pólya, understood problem solving to be a motivational device rather than a way of engaging 
in mathematics. Hence, when students did not value his use of motivational problems, and he 
felt pressure to make sure that the students understood core content, he jettisoned “problem 
solving” to spend more time on “basics.” David Cohen’s (1990) study of “Mrs. Oublier” 
provides similar insights. Mrs. Oublier claimed to have adopted reform methods—but her 
understanding of reform was rather shallow, and many of her established teaching habits 
undermined her attempts to adopt reform practices. From such studies readers learn to look 
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at teaching in more subtle, nuanced ways—but they do not expect other teachers to behave 
precisely the ways that Fred or Mrs. Oublier did.

Replicability is an issue, however, when theoretical claims are made; also when claims 
are made regarding the generality of various phenomena. If a theory posits that people have 
certain mental structures, for example, then other researchers should expect to document 
the existence of such structures. A paradigmatic case is that of short-term memory (STM). 
George Miller’s famous 1956 paper “The Magic Number Seven, Plus or Minus Two: Some 
Limits on Our Capacity for Processing Information” makes the claim that the capacity of 
short-term memory is strictly limited—that people typically have between fi ve and nine short 
term memory “buffers” that hold information, temporarily, while performing mental actions. 
Such a limitation would put serious constraints on the capacity of individuals to perform a 
wide range of mental actions. For example, multiplying two three-digit numbers, say 384 × 
673, requires keeping track of more than 9 subtotals. Most people will not be able to perform 
this task with their eyes closed, because they will forget some of the numbers involved before 
they can complete the task. This fi nding can be easily replicated, and the fact that it can be 
establishes the robustness of the fi nding.10,11 Claims about other cognitive structures or pat-
terns can be subjected to comparable tests of robustness. For example, much of the early work 
on aspects of metacognition, or on the development and impact of beliefs on students’ math-
ematical performance has been replicated, with students at various age levels.

Similar observations can be made with regard to sociocultural or ethnographic perspec-
tives. Of course, many such studies do not bear replication: they provide insights into particu-
lar situations and contexts, which cannot be “duplicated” in any meaningful sense. However, 
one can examine the robustness of theoretical constructs, by asking about the consistency 
with which they are applicable and informative in contexts where they are said to apply. For 
example, the idea of the “didactical contract” (see, e.g., Brousseau, 1997) has been at the 
foundation of a large body of French educational research for some decades, and has provided 
a consistent and productive orientation to empirical studies.

It should be noted that issues of replicability, generality, and trustworthiness are deeply 
connected to the issues of rigor and specifi city discussed above. The ability to replicate a 
study, or to employ a theoretical construct in the way it was employed by an author, depends 
on the original work being well enough defi ned that other researchers following in the foot-
steps of the authors can employ methods or perspectives that are quite close to the original. 
This should be obvious, but it has not been, historically. Consider this case in point from the 
classical education literature. Ausubel’s (1968) theory of “advance organizers” postulates that 
if students are given an introduction to materials they are to read that orients them to what is 
to follow, their reading comprehension will improve signifi cantly. After more than a decade 
and many, many studies, the literature on the topic was inconclusive: about half of the stud-
ies showed that advance organizers made a difference, about half not. A closer look revealed 
the reason: the very term was ill defi ned. Various experimenters made up their own advance 
organizers based on what they thought they should be—and there was huge variation. No 
wonder the fi ndings were inconclusive.

There are, of course, standard techniques within both the cognitive and anthropological 
traditions for dealing with such issues. One is the training of multiple observers. A series 
of trained observer-analysts can work through the same body of data independently, and 
compare notes afterwards. If all goes well, those observers should “see” pretty much the 
same things. And, if the constructs are truly well defi ned and communicated, researchers 
from outside the original research group should to be able to learn the techniques and, when 
given the data (such as videotapes, etc) draw essentially the same conclusions. It should be 
noted that the cognitive/experimental and social/anthropological communities each have 
their own approaches to these issues, but that there is overlap in spirit if not in detail. Within 
the cognitive community, for example, there is a tradition of computing inter-rater reliability 
to identify the degree to which independent researchers assign the same coding to a body of 
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data (say a transcript or videotape). Those who work within anthropological traditions tend 
to discuss the “trustworthiness” of a study. For a discussion of the relationship between these 
two traditions, see Moschkovich and Brenner (2000). For more extended discussions of these 
constructs, see LeCompte, Millroy, and Preissle (1992), LeCompte and Preissle (1993), and 
Lincoln and Guba (1985).

One source of trustworthiness is having multiple eyes view the same data. Another, to 
which we now turn, is having multiple lines of evidence or argument that point to the same 
interpretations or conclusions.

Multiple sources of evidence (“triangulation”)

Argumentation in education is much more complex than in mathematics and the physical 
sciences. In mathematics, one compelling line of argument (a proof) is enough: validity is 
established. In education (more broadly, in the social sciences), we are generally in the busi-
ness of looking for compelling evidence. The fact is, evidence can be misleading—what one 
thinks is general may in fact be an artifact or a function of circumstances rather than a general 
phenomenon.

Here is one example. Some years ago I made a series of videotapes of college students work-
ing on the problem, “How many cells are there in an average-size human adult body?” Their 
behavior was striking. A number of students made wild guesses about the order of magnitude 
of the dimensions of a cell—from “let’s say a cell is an angstrom unit on a side” to “say a cell is 
a cube that’s 1/100 of an inch wide.” Then, having dispatched with cell size in seconds, they 
spent a very long time on body size—often breaking the body into a collection of cylinders, 
cones, and spheres, and computing the volume of each with some care. This was very odd.

Some time later, I started videotaping students working problems in pairs rather than by 
themselves. I never again saw the kind of behavior described above. It turns out that when 
they were working alone, the students felt they were under tremendous pressure. They knew 
that a mathematics professor would be looking over their work. Under the circumstances, 
they felt they needed to do something mathematical—and volume computations at least made 
it look as if they were doing mathematics. When students worked in pairs, they started off 
by saying something like “This sure is a weird problem.” That was enough to dissipate some 
of the pressure, with the result being that there was no need for them to engage in volume 
computations to relieve it. In short, some very consistent behavior was actually a function of 
circumstances rather than being inherent in the problem or the students. 

One way to check for artifactual behavior is to vary the circumstances—to ask, do you see 
the same thing at different times, in different places? Another is to seek as many sources of 
information as possible about the phenomenon in question, and to see whether they portray a 
consistent picture. In modeling teaching, for example, the Teacher Model Group draws infer-
ences about the teacher’s behavior from videotapes of the teacher in action—but it also con-
ducts interviews with the teacher, reviews his or her lesson plans and class notes, and discusses 
tentative fi ndings with the teacher. In this way, the group deliberately seeks convergence of 
the data. The more independent sources of confi rmation there are, the more robust a fi nding 
is likely to be.

For additional discussions of the issues discussed in this section of this chapter, see Clem-
ent (2000), Cobb (2000), and Moschkovich and Brenner (2000). Clement’s comments are 
grounded in his experience using clinical interviews to build models of students’ understand-
ings of a range of science concepts. A key concept for Clement is the viability of a model. He 
offers (p. 560) a set of criteria for evaluating the viability of models and theories that overlaps 
signifi cantly with those discussed here. Cobb, in a discussion grounded in his experience 
with teaching experiments, focuses on the generalizability and trustworthiness of analyses. 
Moschkovich and Brenner provide an overview of both traditional and naturalistic approaches 
to these issues.
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VI. A HEURISTIC FRAMEWORK FOR SITUATING RESEARCH 
STUDIES, AND A SET OF ISSUES IT RAISES

Prologue: A structural dilemma

Researchers in (mathematics) education now have access to an extraordinarily wide array of 
methods. They confront enduring questions regarding which kinds of methods are appropri-
ate in which circumstances, a problem exacerbated by the variety of methods currently avail-
able. My original intention for this section of this chapter was to provide a selective overview 
of some relevant categories of research methods, and to raise some issues about their use. This 
is by no means a straightforward task. Indeed, as I worked to organize this section, I came to 
realize that the very notion of an “overview of methods” is likely to be a fruitless endeavor. 
More central, and more to the point, are questions regarding the purposes of the research 
undertaken and the kinds of information that various research methods can yield—when 
those are understood, the selection of methods and their application should follow. Thus, 
rather than offering a taxonomy of methods, this section of this chapter will offer what might 
be considered a heuristic guide to thinking about different kinds of claims that are made in 
educational research, and the warrants researchers might produce to justify those claims.

Since the idea of a taxonomy of methods has clear face validity and might seem natural 
to the reader, it is worth explaining why that approach was abandoned. When I constructed 
the outline of this chapter, it seemed logical that at some point I would discuss what might 
be considered “rough equivalence classes” of approaches to research, raising some issues con-
cerning the character of each. If one decides to take that approach, it is hardly necessary to 
reinvent the wheel; others have produced state-of-the-art categorizations. It seemed reason-
able, therefore, to base the taxonomy on recent categorizations of current research. An obvi-
ous candidate for a starting point was the Handbook of Research Design in Mathematics and 
Science Education (Kelley & Lesh, 2000). Its editors chose to emphasize research designs 
that are intended to radically increase the relevance of research to practice. Examples of such 
research designs include:

Teaching experiments
Clinical interviews
Analyses of videotapes
Action research studies
Ethnographic observations
Software development studies
Computer modeling studies (Kelley & Lesh, 2000, p. 18)

My expectation was that I would supplement this categorization of designs (many of which, 
like design experiments, reside in “Pasteur’s quadrant”) with discussions of more traditional 
approaches to educational research, such as experimental designs and statistical studies.

Such an approach turned out to be impossible. The reason is that on closer examination 
the set of categories given above turns out to be fundamentally incoherent. This incoherence 
is on at least two dimensions: ill-defi nedness and categorical overlap. Regarding the former, 
consider, for example, the term teaching experiment. 

In general, teaching experiments focus on development that occurs within conceptually 
rich environments that are explicitly designed to optimize the chances that relevant devel-
opments will occur in forms that can be observed. The time periods that are involved may 
range from a few hours, to a week, to a semester or an academic year. Furthermore the 
environment being observed may range from small laboratory-like interview rooms, to 
full classrooms, to even larger learning environments. (Kelley & Lesh, p. 192)

•
•
•
•
•
•
•
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Such an all-encompassing defi nition allows for studies that bear little resemblance to each 
other—with regard to any of context, focus, or investigatory method(s) —to be considered 
members of the same category. In the Handbook’s section on teaching experiments, for exam-
ple, Lesh & Kelley (2000) describe “multitiered” teaching experiments in which teams of 
students “work on a series of model-eliciting activities,” participating teachers “construct and 
refi ne models to make sense of students’ modeling activities, and researchers “develop models 
to make sense of teachers’ and students’ modeling activities.” In a chapter, entitled “teaching 
experiment methodology: Underlying principles and essential elements,” Steffe and Thomp-
son (2000) focus on developing an understanding of “students’ mathematics”—“whatever 
might constitute students’ mathematical realities” (p. 268). Their goals are in many ways 
consonant with the goals of traditional experimental studies, although their methods are 
radically different. Their teaching experiment was, in essence, a form of hypothesis testing as 
follows: “Suppose we identify two groups of students who (as far as we can tell) have devel-
oped for themselves different understandings of the counting process.12 We hypothesize that 
these two groups of students will respond differentially to a particular kind of instruction, 
with the gaps between the two groups increasing as a result of instruction.” In short, Steffe 
and Thompson were conducting an experiment with the expectation that students’ specifi c 
(attributed) cognitive structures would interact with instruction in particular ways. They note 
the following:

We use experiment in “teaching experiment” in a scientifi c sense. The hypotheses in the 
teaching experiment [described immediately above] were that the differences between 
children of different groups would become quite large over the 2-year period and that 
the children within a group would remain essentially alike. That the hypotheses were 
confi rmed is important, but only incidental to our purposes here. What is important is 
that teaching experiments are done to test hypotheses as well as to generate them. One does 
not embark on the intensive work of a teaching experiment without having major research 
hypotheses to test. (Steffe & Thompson, 2000, p. 277; emphasis added)

There are, indeed, some similarities between the studies reported by Lesh and Kelley and by 
Steffe and Thompson, including the iterative and refl ective character of the studies. But the 
differences far outweigh the similarities. Lesh and Kelley characterize their work as “a longi-
tudinal development study in a conceptually rich environment” (page 197), while Steffe and 
Thompson characterize their work as a (very rich) form of hypothesis-testing experiment.

These two examples alone point to the fundamental incoherence of the category—and the 
problem gets worse when one considers other examples of the category given in the Hand-
book, or classical examples such as those found in the Soviet Studies in School Mathematics 
(Kilpatrick & Wirszup, 1975).

This problem was exacerbated by the signifi cant overlap of the various categories listed 
above. For example “analyses of videotapes” are employed in all of the categories listed 
above—in teaching experiments, clinical interviews, action research, ethnographies, and 
computer-based development and modeling studies. A large number of “action research stud-
ies” are teaching experiments (in the sense defi ned by Lesh and Kelley, above) and vice versa. 
Software development studies often involve teaching experiments as part of their design. And 
so on.

In short, the kind of taxonomy offered by the Handbook—the kind of taxonomy I had 
hoped to use as the basis for this section of this chapter—is fundamentally incoherent. It is 
based on surface structure rather than deep structure. The problem for this chapter, then—
and for the fi eld—becomes, What is an appropriate deep structure for conceptualizing and 
organizing research in (mathematics) education?

Would that there were a straightforward or clear answer to this question. This section 
offers one tentative approach, which can be considered preliminary at best. In keeping with 
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much of the qualitative literature (see, e.g., Cobb, 2000), I shall argue that, whether one is 
discussing quantitative or qualitative research, generality (or scope) and trustworthiness are 
two fundamental dimensions of research fi ndings; and that importance is a third. In what 
follows, I shall briefl y elaborate on this perspective. Having done so, I shall use this frame to 
structure the discussion of a number of illustrative examples. The goal is to provide a way of 
thinking about the implications of various fi ndings—how well they are warranted, and how 
widely they apply. The discussion will proceed along the “generality” dimension of the frame-
work. I start with examples of little generality, and discuss their properties (specifi cally, their 
trustworthiness and importance). The discussion then proceeds through a series of examples 
of increasing generality. 

A provisional organizational frame

Figure 19.6 provides a schematic representation of a three-dimensional framework for consid-
ering the character of research studies in education. As suggested immediately above, three 
main attributes by which a study can be judged are the following:

Generality, or Scope. The claimed generality of a study is the set of circumstances in which 
the author(s) of a study claim that the fi ndings of the study apply. The potential general-
ity of a study is the set of circumstances in which the results of the study (if trustworthy) 
might reasonably be expected to apply.
Trustworthiness. The issue is, how well substantiated (according to many of the criteria 
elaborated in Section V) is the claimed generality of the study? How solid are the warrants 
for the claims? Do they truly apply in the circumstances in which the authors assert that 
the results hold?
Importance: To put things bluntly, how much should readers care about the results?

Here are a few examples to clarify the way these constructs will be used.
One classic study, conducted by Harold Fawcett, is reported in the 1938 Yearbook of the 

U. S. National Council of Teachers of Mathematics, The Nature of Proof. Fawcett provides 
a richly textured description of a course in geometry that he developed and taught. The 
fundamental goals of the course were to (a) help students develop a deep understanding of 
the concept of proof in mathematics, through the study of geometry; and (b) to link those 

•

•

•

Trustworthiness

Importance

Generality
(claimed and potential)

Figure 19.6 Three important dimensions along which studies can be characterized.
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understandings, and the reasoning processes involved, to real world deductive reasoning. 
Fawcett describes the nature of instruction with some care. Readers get a sense of classroom 
discourse, of the kinds of questions the class debated, and of the fl ow of argument. Fawcett 
provides instructional artifacts, such as the forms students used to analyze arguments in the 
media, and he describes classroom discussions concerning those arguments. He provides a 
list of geometric results derived by the class, so readers can develop a good sense of the cur-
riculum. And, he offers multiple forms of evaluations of student performance in the course: 
student scores on a state-wide test of plane geometry; a “transfer” test of reasoning in non-
mathematical situations; data from students regarding their reasoning outside the course; 
comments from parents regarding their children’s abilities to think critically; comments from 
six external observers; and student testimonials. 

The body of evidence offered by Fawcett is compelling and convincing—hence his research 
report scores quite high on the trustworthiness dimension. Its score on the generality dimen-
sion, in contrast, is quite low; Fawcett has offered compelling detail in the description of one 
class, and a rather unusual one at that. His report is, in essence, an existence proof. Fawcett 
has shown that it is possible to offer instruction from which students can develop a deep 
understanding of geometry, and that his students were able to apply the reasoning skills that 
they learned in the course to “every day” arguments as well. From my perspective, that makes 
his fi ndings quite important—it shows that such goals can be achieved. (Consider by anal-
ogy another existence proof, Orville and Wilbur Wright’s fl ights at Kitty Hawk in 1903. The 
Wright brothers made four fl ights in one day, the last of which lasted 59 seconds and covered 
852 feet. The evidence of engine-powered heavier-than-air fl ight was trustworthy. There was 
no generalization at that point, but the very fact that fl ight was achieved ultimately opened up 
a world of possibilities.) As will be seen below, a fair number of important educational studies 
are of this type. In addition, pioneering studies are often followed by replications and exten-
sions, which serve to establish the generality of the fi ndings.

As a second example, in the 1970s and 1980s there were a large number of studies (e.g., 
Clement, 1982; Clement, Lochhead, & Monk, 1981; Rosnick & Clement, 1980) that dealt 
with the “students and professors” problem:

Using the letter S to represent the number of students at this university and the letter 
P to represent the number professors, write an equation that summarizes the following 
sentence: “There are six times as many students as professors at this university.”

Numerous replications of the original studies in a wide range of contexts indicated that more 
than half of the undergraduate students not majoring in mathematics, science, or engineer-
ing produce the equation P = 6S instead of S = 6P. A wide variety of explanations for this 
phenomenon were offered, and some attempts at remediation were made on the basis of those 
explanations. After some time, however, the well ran dry. Compelling explanations of the 
phenomenon did not emerge, and attempts at remediation were not demonstrably successful. 
The fi eld’s attention turned elsewhere. 

In terms of the criteria discussed above, this body of research is trustworthy—at least in 
the sense that the phenomenon was robust and easily replicated. Generality is relatively low, 
in that the phenomenon, while robust, was never tied to any theoretical ideas that had sig-
nifi cant scope. And ultimately, the fi ndings—though “hot” for some time—were relatively 
unimportant.

Note that there can be very different sources of trustworthiness, depending on the nature 
of the claims and the methods involved. Fawcett’s work, though “small n,” was trustworthy 
because of the richness of the analyses and consistency of the data. The “students and pro-
fessors” data were trustworthy because of the replicability of the phenomenon and the large 
number of data points involved. Note also that large n in the latter example did not imply 
generality. Indeed, signifi cant generality may be suggested by small n studies. For example, 
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early studies of monitoring and self-regulation in mathematical problem solving suggested 
that the absence of effective metacognitive skills could be a cause of problem solving failure in 
any domain. And, large n is no guarantee of either trustworthiness or generality. For example, 
early studies regarding the effects of caffeine consumption turned out to be invalid because 
researchers neglected to take into account the correlation between coffee drinking and smok-
ing, and were thus unknowingly confl ating the effects of smoking and caffeine consumption. 
And, the fi ndings of decades’ worth of medical studies conducted with solely male samples 
were assumed—incorrectly, it turns out—to apply to females as well. The studies were far less 
general than originally thought. (Recall Figure 19.5: the choices of conceptual model and of 
focal variables, whether consciously or unconsciously made, have a fundamental impact on 
both the generality and trustworthiness of a study.)

The discussion that follows examines a series of research studies, ordered roughly by the 
generality of the claims made for them. For each study, methodological issues related to trust-
worthiness are discussed—the question being, “for studies of this type, what does it take to 
provide adequate warrants for the claims being made?” 

Two points should be made regarding the choice of generality as the dimension along 
which studies will be ordered. First, this approach explicitly renders irrelevant the “qualita-
tive/quantitative” distinction that has bedeviled the literature. The issues that count are the 
following: What kinds of claims are being made? What methods are appropriate for making 
those claims? What warrants are offered in defense of those claims? Providing trustworthy 
documentation of any particular kind of claim may call for quantitative methods; it may call 
for qualitative methods; it may call for both.

Another possible bifurcation is to separate research studies into the following two classes: 
research that tries to describe “things as they are,” and research that documents attempts at 
change.13 “Descriptions of things as they are” consist of attempts to describe objects, events, 
structures, and relationships as they occur. One obvious set of such studies consists of “natural-
istic” observations. However, this class of studies is much broader: various probes, experimen-
tal or otherwise, are often used in order to discover what things are and how they work. For 
example, Piaget’s claim that “object permanence” is learned rather than innate was established 
through a series of clinical interventions with young children. (Piaget obscured an infant’s 
view of a key ring just as the child was in the middle of reaching for it, and the child stopped in 
mid-reach.) The same holds for almost all Piagetian clinical interviews, such as those regard-
ing conservation of volume, the child’s sense of time and space, and more. Piaget’s goal was to 
develop an understanding of underlying cognitive structures and their development. He did 
so by confronting his interview subjects with interesting (and very carefully designed) situ-
ations, and then drawing inferences about the interviewees’ underlying cognitive structures 
from their responses to the situations. Similarly, laboratory studies aimed at determining how 
many “buffers” people have in short-term memory are attempts to describe stable cognitive 
structures. And, large-scale testing often aims at descriptions of how things are. One example 
is Artigue’s statement that “More than 40% of students entering French universities consider 
that if two numbers A and B are closer than 1/N for every positive N, then they are not neces-
sarily equal, just infi nitely close” (p. 1379). In sum, the category “descriptions of how things 
are” is quite broad, and the methods used extraordinarily diverse. 

On the surface, descriptions of action research or “attempts to make change and document 
it” might seem to be different from the type of study described immediately above. Much 
such work (e.g., Fawcett’s, my problem solving courses, or various “design experiments”) con-
sists of attempts to establish existence proofs—attempts to show that something can be done. 
Other studies are comparative: the claims regarding the implementation of various kinds of 
software, or other instructional practices, are that students do “better” under certain condi-
tions than under others. Yet, the methods used to document the claims often overlap with 
those used for descriptions of things-as-they-are. More importantly, the underlying issues 
concern questions such as: What kinds of claims are being made, and why should one believe 
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them?” Like those mentioned above, these claims can be ordered by generality; then, given 
the nature of the claims, one can examine their trustworthiness. For these reasons, descrip-
tions of things-as-they-are and things-as-they-might-be will be conjoined in the discussion 
that follows.

A spectrum of studies, ordered by generality

Category 1: Limited generality, but … (if properly done) … 
“Here is something worth paying attention to.”

A large number of studies are important not because they provide documentation of phe-
nomena that are widespread, but because they bring readers’ attention to an issue worth 
considering. The studies themselves may have very limited generality, but they may have heu-
ristic value—they may point to issues that are important to consider, and may turn out to be 
general. They may deepen an understanding of some phenomenon. They may make a meth-
odological contribution, or they may clarify or expand a theory. 

For example, various studies have suggested that the “lessons learned” in classrooms can 
be very different than intended. One case in point is Wertheimer’s (1945) argument, quoted 
in Section II, that instruction that focuses on drill and practice “is dangerous because it easily 
induces habits of sheer mechanized action, blindness, tendencies to perform slavishly instead 
of thinking, instead of facing a problem freely.” On the one hand, the reader may well reso-
nate with Wertheimer’s claim on the basis of personal experience or classroom observations. 
On the other hand, one has to recognize that by contemporary standards, the evidence he 
offers in support of his claim is no more than anecdotal. The observations are not fl eshed out 
in detail. One knows little about the background and classroom experiences of the students. 
There is little sense of how prevalent the phenomenon might be, or of how deep and resis-
tant to change it is. (Were the results perhaps artifacts of his interactions with the students? 
Might the students have acted differently if he had structured the conversations somewhat 
differently?) The point here is not to chastise Wertheimer—those were different times, with 
different standards—but to point out that his observations, no matter how intriguing and 
important (and they were!), were not trustworthy in the sense of meeting the criteria elabo-
rated in Section V. That trustworthiness can be compared with, say the descriptions of “mak-
ing sense of linear functions” and “Hawaiian children’s understanding of money” found in 
Moschkovich and Brenner (2000). In those studies (explicitly chosen as cases illustrating 
the integration of “a naturalistic paradigm” into research on mathematical cognition and 
learning), the authors explicitly address the questions one would expect the skeptical reader 
to pose: How credible are the claims? How broadly might they apply, and why should one 
believe that they do? How rich are the descriptions of events? What kinds of sampling was 
done? What kinds of triangulation? Did the researchers create an “audit trail” and make it 
accessible? When the answers to such questions are available and inspectable, readers can 
assess the degree to which the fi ndings are trustworthy.

A very large percentage of educational studies are of the type, “here is a perspective, phe-
nomenon, or interpretation worth attending to.” The ultimate value of such papers is two-
fold, in that they offer a heuristic perspective (“one should pay attention to this aspect of 
reality”) and because they can serve as catalysts for further investigation. As a case in point, 
consider Bauersfeld’s 1980 paper, “Hidden Dimensions in the So-called Reality of a Math-
ematics Classroom.” Bauersfeld re-interprets a teaching episode that had been the subject of 
another scholar’s analysis. His “text” was a dissertation by G. B. Shirk (1972) at the Uni-
versity of Illinois, in which Shirk focused largely on the content and pedagogical goals of 
beginning teachers. Bauersfeld wanted to highlight a metatheoretical point—that teaching is 
a social activity as well as a cognitive one, and that viewing teaching as such can yield power-
ful insights into what happens in classrooms. His re-analysis “is used to identify four hidden 
dimensions in the classroom process and thus defi cient areas of research: the constitution of 
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meaning through human interaction, the impact of institutional settings, the development 
of personality, and the process of reducing classroom complexity” (Bauersfeld, 1980, p. 109). 
The phenomena were not (yet) claimed to be general, but were declared to be worthy of 
investigation. Similarly, various studies of discourse in classrooms, illustrating analyses from a 
“situative perspective” (see, e.g., Greeno & the Middle-School Mathematics through Appli-
cations Project Group, 1997, 1998), serve the joint purpose of illuminating a set of particular 
classroom events and highlighting the potential value of an emerging theoretical approach.

Many other studies do not make such claims overtly, but in essence have similar inten-
tions. Consider three teaching studies, which are in some ways similar and in some ways very 
different. Cooney’s (1985) study of a beginning teacher showed how a beginning teacher’s 
professed instructional goals could be undermined by his deeply held beliefs and his interac-
tions with students. Cohen’s (1990) study of a teacher undertaking “reform” showed how 
the teacher’s well-established classroom routines could result in the perception but not the 
substance of reform:

In the mid 1980s, California state offi cials launched an ambitious effort to revise math-
ematics teaching and learning. The aim was to replace mechanical memorization with 
mathematical understanding. This essay considers one teacher’s response… she sees her-
self as a success for the policy: she believes that she has revolutionized her mathematics 
teaching. But observations of her classroom reveal that the innovations in her teaching 
have been fi ltered through a very traditional approach to instruction. The result is a 
remarkable melange of novel and traditional material. Policy has affected practice in this 
case, but practice has had an even greater effect on policy. (Cohen, 1990, p. 311)

In a third, richly detailed study, Eisenhart et al. portray the myriad factors that shape a stu-
dent teacher’s decision making:

We reveal a pattern in which … there were a variety of strong commitments to teach-
ing for both procedural and conceptual knowledge; but … the student teacher taught, 
learned to teach, and had opportunities to learn to teach for procedural knowledge more 
often than and more consistently than she did for conceptual knowledge. We fi nd that the 
actual teaching pattern (what was done) was the product of unresolved tensions within 
the student teacher, the other key actors in her environment, and the learning-to-teach 
environment itself. (Eisenhart et al, 1993, p. 8)

In all of these studies, there are suggestions of generalizable fi ndings: teacher goals can be 
subverted if they are not tied to meaningful, implementable ideas (Cooney); some instruc-
tional goals are suffi ciently nebulous that teachers can believe they are attaining them when 
they are not (Cohen); and, confl icting pressures and mixed messages from the school district 
and state, along with shaky subject matter knowledge, can undermine the intention to teach 
for concepts as well as skills (Eisenhart et al., 1993). The suggested generality of these fi nd-
ings, and the fact that attempts at teaching for understanding might be undermined if they 
are not taken into account, is what makes them important. The implications are heuristic, 
however: “we believe there are many cases like this in the world, and it would be good to keep 
the implications of these studies in mind.” The claims themselves are not about generality: 
the evidence offered is about the cases at hand. The standard for judging these papers, given 
their claims, is: are the cases compelling, and the analyses trustworthy? Making that deci-
sion entails, of course, judging whether the methods employed provide adequate evidence 
for claims made (and whether they provide evidence or arguments that counter alternative 
explanations). 

As noted above, various existence proofs also fall into this category. Fawcett’s (1938) study 
demonstrated that students could, under appropriate circumstances, learn aspects of formal 
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mathematical arguments and apply their understandings in real-world contexts. The same is 
the case for various design experiments (e.g., Brown, 1992; Brown & Campione, 1996) and 
fi ne-grained research on various other instructional interventions (see, e.g., Cognition and 
Technology Group at Vanderbilt, 1997; Schauble & Glaser, 1996). 

A word about “design experiments” is in order here. The term was invented in order to 
justify the idea that scientifi c work could be done in the context of real-world interventions, 
and to offer an alternative to the standard model of experimentation, where “treatments” and 
outcome measures are designed in advance. The underlying idea is that a complex interven-
tion is planned and implemented, and huge amounts of data (including videotapes, class logs, 
student work, etc.) are gathered. If interesting or important events appear to take place, the 
data are analyzed (depending on the nature of the events) to document their existence or 
explain their occurrence. Some of these explanations are post hoc: the events are noted, and 
the record is combed for relevant evidence. But the order of data gathering is not essential. 
What is essential is the following: once claims are made, how do they stack up against the 
criteria identifi ed in Section V? Do the methods employed provide some substantial degree of 
trustworthiness regarding the fi ndings? As such, the methodological issues concerning such 
studies are similar in kind to those concerning other studies described in this category. (If 
broader claims are made regarding design experiments or other interventions, then the stud-
ies fall into the next category.) For extended discussions of design experiments, which are still 
an unsettled construct, see Kelley (2003) or Schoenfeld (2006).

Category 2: Some generality is claimed

One case in point here is the quotation from Artigue (1999) given above: “More than 40% 
of students entering French universities consider that if two numbers A and B are closer than 
1/N for every positive N, then they are not necessarily equal, just infi nitely close” (p. 1379). 
Similar kinds of statements are made regarding various national assessments of mathemati-
cal competency, cross-national comparisons, and so on. When such statistical statements are 
made, there are issues of sampling, of construct validity (does the question warrant the inter-
pretation given?), and more—recall Figure 19.5.

Other statements concerning the typicality of various phenomena—especially phenomena 
not amenable to testing of the type just described—may come with different kinds of war-
rants. Here are two examples that claim some degree of generality, but do not quantify it.

In her studies of mathematics teachers’ knowledge, Liping Ma (1999) analyzed Chinese 
and U.S. teachers’ responses to a series of questions regarding topics or problems in elemen-
tary mathematics and how they might teach them. Ma’s sample of teachers included 23 “above 
average” teachers from the United States, and 72 teachers of a wide range of ability from 
China. Her research documents, with care and detail, the fact that the sample of Chinese 
teachers had a deeper knowledge of mathematics and how to teach it than did their U.S. coun-
terparts. Specifi cally, eight of the Chinese teachers had developed a form of understanding 
that Ma calls “profound understanding of fundamental mathematics”—a rich and connected 
view of the content and ways to promote student learning of it. None of the U.S. teachers had 
developed comparable knowledge.

Ma does not focus on the statistics. Hers were not random samples, and there is no claim 
that her statistics represent the percentages of the populations of U.S. and Chinese teachers 
who have developed a profound understanding of fundamental mathematics. Nonetheless, 
the differences in percentages are dramatic. They suggest strongly that a non-trivial percent-
age of teachers in China develop this deep form of knowledge, and that it is relatively rare 
among teachers in the United States. Indeed, the way that Ma’s samples were constructed 
lends additional credence to those fi ndings: her sample included a spectrum of Chinese teach-
ers, while the teachers from the United States were considered “above average.” Hence, in 
addition to the trustworthiness of her analysis, there is a plausible degree of generality to her 
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fi ndings. The richness of the analysis lends plausibility to the generality of the fi ndings, even 
though no claim is made for it.

A similar suggestion of generality, without precise statistics, could be seen in a series of 
studies I conducted regarding student beliefs about learning and doing mathematics. In a 
series of observations in one focal classroom school, I documented instructional practices, 
including the fact that a typical test contained 25 problems to be worked in 54 minutes, and 
that in a typical class period, students would work more than a dozen problems. The docu-
mentation included statements from the teacher to the effect that students would not have 
time to think through problem solutions on tests; they would have to enter the exam know-
ing how to solve the problems they would face. Students were interviewed, and they were 
videotaped as they worked on problems. I also administered a questionnaire to 230 students 
(including the focal class) at various grade levels in the metropolitan area containing the 
school. Among the data gathered were the following.

The 206 responses to the question “how long should it take to solve a typical homework 
problem” averaged just under 2 minutes, and not a single response allotted more than 
fi ve minutes. The largest of the 215 responses to “What is a reasonable amount of time 
to work on a problem before you know it’s impossible?” was twenty minutes; the average 
was twelve minutes. The following responses to both questions were typical. “Up to 2 or 
3 minutes. I would work on a problem for about 10 minutes before deciding it’s impos-
sible.” “A typical homework problem would take about 45 seconds. About 10 minutes for 
the impossible problem.” “It would probably take from 30 seconds to 2 minutes. I usually 
give up after 3 or 4 minutes if I can’t do it.” “It should only take a few minutes if you 
understand it. No more than 10-15 minutes should be spent on a problem. (Schoenfeld, 
1989, p. 340)

This kind of analysis led to the following conclusions.

The data from this study help to provide a link between the fi ne-grained but small-scale 
observations in the [focal] study and the coarse-grained but nationwide data gathered 
in surveys such as the [U. S.] National Assessment. The questionnaire was administered 
in highly regarded schools with good graduation and placement rates. … The rhetoric 
of problem solving … was frequently heard in the classes we observed – but the reality 
of those classrooms is that real problems were few and far between, if they were seen at 
all. Virtually all of the problems the students were asked to solve were bite-size exercises 
designed to achieve subject matter mastery; the exceptions were clearly peripheral tasks 
that the students found enjoyable, but that they considered to be recreations or rewards 
rather than the substance of what they were expected to learn. This kind of experience, 
year after year, has predictable consequences. Students come to expect typical homework 
and test problems to yield to their efforts in a minute or two, and most of them come to 
believe that any problem that fails to yield to their efforts in twelve minutes of work will 
turn out to be impossible. (Schoenfeld, 1989, p. 348)

At issue here is the set of warrants for generality. Fine-grained studies of a focal class provided 
a possible explanation of mechanism, and a description of classroom practices allowed readers 
to decide whether these practices seemed typical. Statistical analyses of the focal classroom 
revealed no differences between their responses to the questionnaire and those of the larger 
group of 230 students, from a number of schools (which used state-wide curricula). And, 
the student responses on questions that overlapped with national assessments suggested that 
their responses were typical of responses nation-wide. This web of connections at least lends 
credence to the claim that the pattern of activities seen in the focal classroom, and their con-
sequences, were anything but anomalous.
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Other such broad notions of (typically unquantifi ed) generality can be seen in research 
on aspects of thinking and learning such as metacognition. The general claim, broadly sub-
stantiated in the literature, is that the absence of effective self-monitoring and self-regulatory 
behavior is a signifi cant cause of student failure in problem solving. Understanding this state-
ment depends among other things, on one’s defi nition of “problem solving.” The circum-
stances in which it applies are those in which the problem solver is confronted with a task for 
which there is no obvious solution path, and decisions about how to approach the problem 
must be made. The claim is unlikely to apply to any signifi cant degree in contexts in which 
problem solvers know the relevant techniques.14 The methodological point here is that the 
“operating conditions” for many general claims need to be specifi ed. Saying “X is important” 
implies across-the-boards generality, and appropriate warrants should be produced. Saying 
“X is important, and is likely to manifest itself in these particular circumstances” calls for a 
different set of warrants.

One fi nal example of not-quite-specifi ed-but-important generality deals with claims about 
attributes of particular groups. A paradigmatic example is the claim in Stigler and Hiebert 
(1999) that “teaching is a cultural activity.” As a generalization, this kind of statement is of 
important heuristic value—and the authors make a good case for it. The warrant is that along 
certain dimensions, there is much more across-nation variation than there is within-nation 
variation. The devil is in the details—which in this case concern dimensions such as lesson 
coherence, time spent on individual exercises or problems, underlying conceptions of subject 
matter understanding, the use of instructional artifacts, and so on. The question for readers 
is, how solid are the warrants along the particular dimensions identifi ed, and how well do dif-
ferences in performance along those dimensions justify the general claims? (Here as with all 
of the other studies discussed, the criteria discussed in Section V can be applied to claims and 
the warrants provided for them.)

Category 3: Signifi cant generality, if not universality, is claimed

Some years ago, Henry Pollak, in discussing differences between research in mathematics 
education and in mathematics, said, “there are no theorems in mathematics education.” By 
that he meant that there are no abstract proofs that something must be the case; instead, 
evidence is offered until the conclusion seems established to the legal criterion—“beyond a 
reasonable doubt.”

The fact is that certain claims in education are universals—typically, claims about underly-
ing cognitive mechanisms or structures. Here are two familiar examples, mentioned earlier 
in this chapter.

As noted above, Piaget documented the fact that children are not born with “object per-
manence,” but that such understandings develop over time—“out of sight, out of mind” may 
be a description of cognitive reality for infants. And, theories of memory including constructs 
such as short-term memory buffers are grounded in reliable data that people have major dif-
fi culty handling more than “the magic number seven plus or minus two” pieces of informa-
tion in short-term memory. More broadly, general notions such as “schemata” are universal 
components of theories of memory. The initial fi ndings, often obtained with very small n, 
have been replicated and extended numerous times.

It is, of course, impossible to prove that such claims actually hold for everyone. However, 
with precise enough defi nitions and operationalization of the research, replications of the 
studies can document the near-universality of the claims. 

Beyond such cases, caveat emptor is probably the best attitude. A large number of claims 
appear to be universal, but they may need unpacking in various ways. Consider, for example, 
a generic claim for the effectiveness of instructional software: “One-on-one human tutoring 
is two standard deviations more effective than whole-class instruction. Our computer-based 
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tutors are not yet that effective, but they are one standard deviation more effective than 
whole-class instruction.” One can (and should) ask: effective according to what criteria? With 
what populations? Compared to what, under what circumstances? Absent compelling answers 
to such questions, there is reason to doubt the generality of the claims. Similarly, linguistic 
infl ation and/or the desire for scientifi c prestige result in various claims regarding researchers 
having various theories or models. As discussed in Section IV, various theories (functional-
ism, confl ict theory, symbolic interactionism, ethnomethodology, critical theory, ethnosci-
ence, cognitive anthropology, exchange theory, psychodynamic theory, behaviorism, APOS 
theory, …) all have their applicability conditions. It is the responsibility of theorists to specify 
those conditions, to defi ne the relevant constructs, and to address the limits (as well as the 
strengths) of what the theories can actually explain. 

The same is true for the use of the term model. A model is more than a picture with a col-
lection of objects and arrows. Claiming to have a model of a particular phenomenon means 
that one has specifi ed particular objects and the relationships among them in the model, and 
that these entities correspond in some well-defi ned way to the objects and relationships in 
the phenomenon being modeled. That is a high standard. A cursory glance at any handbook 
related to education (e.g., Berliner & Calfee, 1996; Grouws, 1992; Kelley & Lesh, 2000; 
Sikula, 1996) reveals models galore. Let us examine a random example from each of these 
handbooks.

In the Berliner and Calfee Handbook, Mayer and Wittrock (1996) offer a model of the 
human information processing system in a schematic diagram (fi gure 3-1, p. 54) that includes 
inputs, outputs, and various kinds of memory. Various arrows go from one box to another. 
A key question (which the literature may well address, but which has to be asked of any such 
fi gure): Just what goes along the arrows? What are these processes called selecting, organiz-
ing, integrating, and storing, and how do they work?

In the Grouws Handbook, Romberg’s (1992) chapter, “Perspectives on Scholarship and 
Research Methods,” provides a “model for research and curriculum development” (fi gure 
3-3, p. 52). Here too there are boxes and arrows, with arrows coming from the boxes labeled 
“classroom instruction” and “students’ behaviors” to the box labeled “students’ cognitions.” 
Once again, the same question needs to be asked: just what goes along the arrows? And, what 
do the boxes really represent?

In the Kelley and Lesh (2000) Handbook, Lesh and Kelley (table 9.1, p. 198) describe a 
project in which (a) the goals for students include “constructing and refi ning models,” (b) 
the teachers “construct and refi ne models to make sense of students’ modeling activities,” and 
(c) the “researchers develop models to make sense of the teachers’ and students’ modeling 
activities.” Now, just what are the models in this case? What are the objects and relationships 
among them, and how do they correspond to the objects being modeled?

In the Sikula (1996) Handbook, Christensen reproduces two “teacher education design 
models” (fi gures 3.1 and 3.2) used by institutions of higher education to describe their 
teacher education programs. These almost defy description. The fi rst is a Venn diagram (no 
arrows) in which the outer ring appears to be a “diverse global society,” the next ring inward is 
labeled “private university/School of Education/Christian Environment,” and the next ring 
contains “facilitator/lifelong scholar/professional/decisionmaker,” inside of which are four 
interlocking rings. The second model appears in the outline of a tree, with “applied research,” 
“professional societies,” “world of practice,” and “state guidelines” at its roots, and a series 
of arrows that ultimately arrive (via “program goals and objectives,” general education,” and 
more) to the “practicing professional.” It seems, alas, that the seductions of scientism that led 
to the adoption of experimental paradigms in the 20th century lives on in the fi eld’s wish to 
claim “theories” and “models” as part of its working apparatus. The aspiration is admirable if 
and only if it is matched with a concomitant commitment to rigor. 
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VII. NOTES ON THE PREPARATION OF RESEARCHERS

Section III of this chapter discussed a series of assertions regarding desiderata for high quality 
research, among them the following:

One must guard against the dangers of compartmentalization. Educators need a sense of 
the “big picture” and of how things fi t together.
One must guard against the dangers of being superfi cial. Generally speaking, high qual-
ity research comes when one has a deep and focused understanding of the area being 
examined.
Researchers should be self-consciously aware of their theoretical perspectives and the 
entailments thereof. The methods they choose to employ should be selected on the basis 
of their appropriateness to address the questions that are considered important.
Researchers must develop a deep understanding of what it means to make and justify 
claims about educational phenomena. What is a defensible claim? What is the scope of that 
claim? What kinds of evidence can be taken as legitimate warrants for that claim? 

Much of the substance of this chapter has been devoted to addressing the substance of these 
last two points. The issues are by no means straightforward, even for established professionals. 
The question, then, is what can beginning researchers do in order to bootstrap some of the 
relevant knowledge?15 I continue with additional assertions and some justifi cations for them.

Students should have the opportunity to engage in research as early as possible in their 
careers, and they should be continually involved in various aspects of research—prob-
lem defi nition, methods selection, data gathering, and data analysis. Students should be 
encouraged, early on, to formulate problems and try to solve them (even if their fi rst 
attempts are as awkward as a baby’s fi rst steps).16

The reason is simple: research is not a spectator sport and people will not develop a feel for 
doing research until they start doing it. This is the case even when one is learning to master 
standard techniques. It is especially the case when the research calls for the kinds of prob-
lem framing and methods development that are now part and parcel of our ongoing work. 
One colleague has summarized the issue succinctly as follows: “The best way to succeed is 
to fail early and often—with the appropriate support and guidance, of course.” This chapter 
has emphasized the fact that there are myriad places where one can go wrong when doing 
research. Fundamental errors can occur in the ways one conceptualizes a problem, selects 
data, or analyzes them (to name just a few). Everyone will make mistakes. With the proper 
feedback and refl ectiveness, one will learn from those mistakes. It makes sense, I believe, to 
start this process as early as possible. (To put things in very direct terms: Would we rather have 
a student make a major conceptual error in a course project or in pilot work for a thesis?)

Multiple perspectives and multiple sources of feedback are good things. Students are likely 
to learn more if their work is commented on by more than one faculty member—especially 
if the faculty’s expertise overlap and complement each other’s.

This is, I hope, self-evident.

Living in a research culture makes a difference—that is where habits of mind get shaped. 
Living in a research culture helps develop the kinds of breadth, depth, and multiple per-
spectives that are essential for the conduct of good research. It also provides important 
opportunities for the refi nement of one’s work.

•

•

•

•

•

•

•
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There may well be “independent scholars” (in the sense of those whose ideas have sprung 
almost completely from within), but I suspect they are relatively few in number and that most 
scholars profi t from sustained membership in a congenial intellectual community. My expe-
rience has been that there is no better way to have one’s ideas shaped than to be a member 
of a community in which your ideas and ideas related to them are discussed. Sometimes the 
shaping is obvious: one walks out of a discussion with new or different thoughts as a result of 
the exchange. Sometimes the shaping is extremely subtle: I have realized, after the fact, that 
some of my ideas were, in important ways, the product of my environment. That is, I was most 
unlikely to have come up with some of the ideas I’ve come up with had I not been engaged in 
long-term conversations with particular colleagues, and infl uenced by their thinking.

Moreover, students can pick up many skills through discussions of others’ work, before 
they are ready to grapple with big problems on their own. (See the discussion of research 
groups, below, for more detail.)

An active research culture also serves as a crucible for the refi nement of work in progress. 
This can be the case for student papers, or student presentations at meetings—but it is also 
the case for my own work, this chapter being a case in point. I bring drafts of all of my papers 
to my research group, which does me the favor of questioning the work in careful detail. I 
profi t every bit as much from these exchanges as my students do when their work is being 
discussed. 

Passion helps (when appropriately harnessed, of course). People do their best work when 
they care about what they do. A program that allows students to pursue their interests is 
likely to result in a higher degree of commitment and higher quality work than a program 
that does not.

This, too, should be self-evident.
If one accepts these assertions, there are various pragmatic ways to insure that students 

have such experiences early in their careers as developing researchers. Some such mechanisms 
are described in the balance of this section.

Project-based courses

Roughly half of the courses in our program (Education in Mathematics, Science, and Tech-
nology Program at the University of California, Berkeley) require students to conduct an 
empirical project of some signifi cant scope. In such courses there is usually a heavy read-
ing load “up front.” In the middle of the term, the reading load lightens as students design 
and implement projects that are related to the course content. At the end of the course, the 
projects are used as vehicles to refl ect on that content. (In addition, students can negotiate 
projects that meet the requirements for more than one course. This allows them to work on 
projects of substantial scope, and to get feedback from more than one faculty member.)

Course projects come in all shapes and sizes. The default option, which is actually exercised 
by very few students, is to replicate a study discussed in the course. Another option is to make 
a minor modifi cation or extension of a study examined in the course. A third, and the one 
most frequently taken, is to fi nd a phenomenon of interest and try to make sense of it. The 
data examined might be videotapes of a classroom or school, students’ work on particular 
instructional materials or a computer program, people’s “out loud” thoughts as they try to 
solve problems, or just about anything else. Almost anything related to the general content of 
a course is considered fair game.

Here are examples of student projects in a recent fi rst year course.
One student had been working for some time as part of a team developing a test of “math-

ematical ability” that was being administered to thousands of students and analyzed using 
statistical measures. For her course project, she selected some people at various points on the 

•
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spectrum from “ordinary beginner” to “talented expert”—the latter being a faculty member 
in mathematics. She hypothesized the kinds of performance that people with different levels 
of mathematical ability would display when they worked the problems, and then videotaped 
the people solving the problems. The reality of people’s performance was an eye-opener: some 
novices displayed much more effective problem solving practices on some of the problems 
than she expected, and her “expert” engaged in rather sloppy reasoning in places. This experi-
ence led her to question some of the assumptions she had been making about the problems, 
and about what people’s test scores really meant.

A second student hypothesized that girls and boys would act differently in same-sex prob-
lem solving groups than they would if all the other students in the group (of four or fi ve) 
were of the opposite sex. As it happened, the people she chose (somewhat randomly) as the 
main subjects in her study tended to have robust character traits (shyness in some cases, 
aggressiveness in others), and there wasn’t much apparent difference in their performance. In 
reviewing the tapes, however, the student became interested in how collaborative the various 
groups were. She began to develop a coding scheme that looked at comments from students 
that invited reaction, versus those that were neutral or closed off conversation. This was a 
legitimate fi rst step toward the quantifi cation of collaborativeness—and a good example of 
problem defi nition and method creation (with help, of course).

A third student analyzed videotapes from an experimental course on mathematical repre-
sentations that had been taught as part of a colleague’s R&D work the previous summer. As 
part of the project, the student in my course examined the beliefs of a student in the experi-
mental course regarding what “counts” as being mathematical; he then tried to correlate the 
second student’s beliefs with her behavior. The student in the experimental course tended to 
disparage successful qualitative reasoning as “mere” common sense while giving high praise 
to mathematical behavior that included writing and solving equations—even though the 
equations she praised were (from our perspective) pretty much gobbledygook. Such beliefs 
seemed to play out in her actions during the course as well. (The evidence that my student 
offered in support of this claim was rather tenuous. That fact catalyzed some productive dis-
cussions about what it takes to justify such claims.)

Other projects dealt with student and teacher perceptions of a “reform” mathematics 
course, an attempt to analyze the teaching of a master teacher, the use of artifacts such as 
white boards (instead of individual sheets of paper) to catalyze interactions during group 
problem solving, and more.

How good were the projects? The truth is that when beginning students try to carry out 
such projects, their attempts tend to be seriously fl awed. Students come to realize that they 
didn’t see the things they expected to see, that they can’t make the arguments they thought 
they’d be able to make … and sometimes, that there are interesting and unexpected leads in 
what they did see, which provide pointers to issues they’d like to pursue. Almost all of the 
papers were problematic in some way or other. That is no surprise; the students didn’t yet have 
the background to design or carry out near-perfect studies. Indeed, I think what happened is 
quite healthy. What the course offered was an institutionally supported way to make mistakes 
in the process of trying to defi ne and work on a non-trivial research problem. Of course, this 
is only profi table if the students have the opportunity to learn from their mistakes. As part 
of their projects, students are asked to say how they would do things differently if they had 
them to do over again. (And—see the discussion of fi rst and second year projects—they often 
have the opportunity to do them over again.) Then, in class discussion of the projects (which 
are presented formally as though at professional meetings) and in faculty evaluations of them, 
there is extended discussion of what worked, what didn’t, and what might be done about it.

Typically, students will take a number of courses each year that have such projects. In that 
way, the program offers an institutionalized mechanism for failing early and often—and for 
learning from those failures. They have the opportunity to develop their own perspectives 
on issues, refi ne their ideas and their methods, and try them out on critical but sympathetic 
audiences. 
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First and second year projects

The scope and quality of course projects are usually limited by the obvious constraint: things 
have to be done in the midst of one semester. For this reason course projects often have the 
character of pilot studies: an idea has been explored but there was not time to work it out 
right. To provide such opportunities we also require much more substantial project work. 

In the summer following the fi rst year of the program, and again in the summer following 
the second, students are required to conduct and write up more extensive studies. Typically, 
these fi rst and second year projects are extensions of course projects: a course project may have 
yielded some tantalizing results, so the student goes back to gather more (or better) data to 
explore the issue in greater depth. With some frequency, project work is cumulative: a second 
year project is an outgrowth or modifi cation of a fi rst year project, and may itself evolve into a 
dissertation project. These projects are expected to meet rather stringent standards. They are 
to be written up as though for publication, and are judged accordingly. Each project report is 
read by two faculty members, and the discussion of the student’s project is a major component 
of our annual student evaluation.

Even though they come on the heels of course work, fi rst year projects can turn out to be 
seriously fl awed, in which case the students are told to revise them and try again. Many are 
respectable, however, and only need minor revisions. Either way, it is healthy to establish a 
high standard for judgment and to provide rigorous feedback. Second year projects tend to 
be of uniformly high quality, and a fair number of them have been published; a signifi cant 
number are presented at professional meetings. The acceptance rate for student proposals and 
papers is quite high. I have no doubt that the students’ success is attributable to the fact that 
we provide them with consistent opportunities do independent work and to receive critical 
feedback on it.

Research groups

As noted above, I believe that students are more likely to become productive researchers, 
and to develop useful habits and perspectives more rapidly, if they are members of a research 
community. When you are constantly engaging with people who live and breathe research 
issues, participating in the development of their ideas and in their successes and failures, you 
are much more likely to pick up “what counts” than you would be if you were working in 
isolation.

In our program, each faculty member has at least one research group. Every student in the 
program is expected to participate regularly in one or more research groups. Many students 
attend two or more groups, because they fi nd the complementary perspectives and expertise 
to be valuable.

While there is tremendous variation, certain properties tend to be present if a research 
group or community is functioning well. Three of those properties are as follows:

There is a sense of purpose and meaningfulness: much of the work done really matters to 
the people involved. (Work is not seen as busy work, but as part of what needs to get done 
to advance the enterprise.)
Much of the work being done is visible—the processes of doing research, including mull-
ing through problems, are public property in the sense that dilemmas are shared and 
community input is valued as a way of solving them. There is a culture of refl ectiveness, 
where the expectation is that problematic issues will be raised, and that members of the 
community will consider contributing to their solution (even problems whose solution 
does not contribute to their own progress) as one of their communal responsibilities. The 
culture is such that there is room for the work and contributions of all members to be taken 
seriously.

•

•
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As I mentioned above, I bring my own writings to the group for critiques. My students have 
commented that this has played a signifi cant role in demystifying the writing process. When 
they see me struggling to express myself, and they see the number of drafts I work through 
(they commented on draft K of this chapter—I work my way through the alphabet!), they get 
a better sense of what it takes to produce a polished paper. Likewise, students have seen me 
struggle with new ideas for my ongoing work—and have played a signifi cant role in shaping it.

The work and interactions of the group provide a series of “handholds” that allow indi-
viduals at various levels of knowledge and expertise to contribute meaningfully to the 
enterprise, and to make parts of it their own. Newcomers’ contributions may consist of 
routine work in the service of the cause (e.g., fi rst-year students in a research group that 
has an ongoing development project might play a small role in the development process, 
help fi eld test some materials, or help videotape lessons). At the same time, those students 
are present for the theoretical discussions and are invited to contribute whenever they felt 
comfortable doing so. Typically, early contributions consist of occasional comments or 
questions, as beginners try to sort out the spirit or the details of what is being done. As 
they become more central members of the community, the character of their questions and 
contributions tends to evolve. The students are likely to take on larger tasks, individually or 
in collaboration, and they increasingly take on ownership of tasks and ideas.

[Another way to describe this process in somewhat more theoretical terms is that a func-
tioning research community provides multiple opportunities for legitimate peripheral partici-
pation. As once-peripheral members become more central to the enterprise they fi nd more 
means of achieving centrality, and there is room and access for new members at the periphery. 
The detailed examination of this process would be a most welcome study.]

There is, it should be stressed, no one model of a productive research group or community. 
Such communities may be very small, consisting of one senior researcher and a few students, 
or they may be rather large, including a substantial number of people with varied levels of skill 
and expertise. Moreover, no such group is static: depending on people involved and the tasks 
at hand (is a major focus of the group conceptualizing a new project, building a collaboration, 
“engineering change,” designing or implementing materials, gathering data, analyzing data, 
writing or revising papers or proposals, or … ?), the day-to-day transactions of the group and 
its level of activity will vary. Among the activities that research groups in our environment 
have supported are the following:

Participation (whether as central player or legitimate peripheral participant) in a major 
ongoing project 

The benefi ts of this kind of engagement were discussed immediately above. 
Providing group members feedback on issues of importance to them.
One function of a research group is to serve as a critically supportive environment for dis-

cussions of student work. What is brought to the group can vary substantially. A student may 
have a vague idea for a project and ask for the group’s help in honing that idea. He or she may 
have some data and want to see the group’s reactions, or may want to see the group’s reaction 
to a tentative explanation of those data. The student may have a draft piece of work—a course 
project, a master’s thesis, a dissertation proposal, a chapter of a dissertation, a proposal for a 
conference presentation, or a paper for submission—and want feedback. Sessions are sched-
uled with enough lead time so that group members are expected to go through the relevant 
materials, and to serve as colleagues in providing help to the presenter.

I note that it is not at all necessary for the students to be working on the “same thing” 
in order for them to take each other’s work seriously. For example, students in one research 
group were working simultaneously on transfer, teacher knowledge, cultural forces shaping 
the effectiveness of instruction, and issues of refl ection on professional growth and integra-
tion. Yet discussions of these students’ ongoing work—from the early stages of problem for-

•
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mulation through the stage of selecting data, agonizing over what the data meant, and then 
writing things up in ways that were cogent and compelling, all proceeded in parallel and in 
comfort. What made the group function effectively was a common interest in helping each 
other work things through, and an understanding that at some fundamental level everyone 
was grappling with the same issues. No matter whose work was being discussed, conversa-
tions were all grounded in the same kinds of questions: What are you trying to say (what are 
the “punch lines”)? Why would anyone think this is important? What kind of evidence will 
convince people that what you are saying is justifi ed? What are counter-interpretations? What 
position will you be in if the data don’t tell the story you’d like? What are the implications of 
your expected results, and why should anyone believe them? Of course the group tried not 
only to raise the questions, but also to help answer them.

It should be noted that in these conversations, everyone profi ts. The presenter gets feed-
back that is useful. The others hone their skills in understanding and critiquing research, and 
in learning to ask others the kinds of questions they will have to ask themselves as indepen-
dent researchers.

Dealing with topics or readings of interest

Research groups often serve as reading or discussion groups. This provides a way to delve 
deeply into issues as a community. Groups have, at various times, decided to “go to school” on 
various theoretical perspectives (constructivism, situated cognition), to explore the strengths 
and limitations of particular research methods, or to discuss papers on topics that just plain 
seemed interesting.

Providing a critical but friendly audience for practice talk

Prior to major professional meetings, research groups often provide forums for practice pre-
sentations. In most groups, students and faculty rehearse their presentations before the group 
before they go “public.” It is much better to learn to deal with tough questions in the com-
fort of a research group than to hear them for the fi rst time when at the podium in a public 
presentation!

What really matters in all of the above? What counts from my perspective is to provide a 
supportive environment that lives and breathes research issues, that is open and refl ective, that 
allows people to pursue ideas that they really care about, and that provides them with many 
opportunities to learn, early on, from the mistakes they will inevitably make. 

In closing this section, I would like to address an issue that Frank Lester raised when he 
reviewed a draft of this chapter: 

I would like to read about what an overall program might look like at three types of 
institutions: (1) those few that expect students to begin thinking seriously about research 
from the beginning, (2) those that are preparing math educators who might also do 
some research, but who surely will be (primarily) consumers of research, and (3) those 
that simply require students to write a dissertation as a fi nal requirement for the termi-
nal degree. My fear is that institutions in the third category are preparing most of our 
future math educators. Even if this is not the case, it surely is true that there are relatively 
few category 1 institutions. In fact, I would like to see him discuss the type of program 
appropriate for category 2 institutions and to engage in some speculation about how to 
prepare math educators to be good consumers and interpreters of research.

I have, elsewhere (Schoenfeld, 1999b) discussed ways to think about core content for a doc-
toral program in mathematics education; what follows are “headlines” of that discussion. 
First, content. There is no solution to the “content problem,” but one can satisfi ce—the goal 
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is to give students a sense of the many fl avors of educational work and their contributions. 
There are, I think, reasonable approaches grounded in the structure of any institution. On the 
one hand, one needs to provide “disciplinary” information. This can be done via core courses 
that refl ect the disciplinary organization of the institution. For example, Berkeley’s School 
of Education is organized into three overarching academic units called “Areas.” Faculty in 
each Area are encouraged to propose core courses that give a taste of mainstream issues, 
perspectives, and methods in that area, while highlighting connections with and perspectives 
and methods from the other areas. (If a school has n areas where n is large, courses bridging 
such areas can be co-taught.) On the other hand, students should come to understand how 
educational issues transcend disciplinary boundaries. One way to do this is to offer a series of 
courses on “cross-cutting topics,” where faculty from different units bring varied disciplin-
ary perspectives to the study of such issues. Any of a number of topics—teacher preparation, 
assessment, or diversity, to name three—can serve as topics for discussion.

Second, methods. It is impossible in a few introductory courses to provide the depth and 
breadth of coverage that will result in students being adequately prepared for the research they 
will do. We can prepare students to be knowledgeable and skeptical consumers, and we can 
help engender in them an understanding of the fundamental issues. We can, in the best of all 
possible worlds, help them develop the right kinds of questioning attitudes—asking, as they 
proceed with their work, what they can say with justifi cation, and how best to approach issues 
so they can make strongly warranted claims. But we should not make the mistake of thinking 
that methods courses will prepare students adequately for their research. If students emerge 
from their methods courses with a sense of how to approach a problem, of how to select 
methods that seem reasonable, and of where to go for help when they realize the limits of 
those methods, then the core has been quite successful. My bias is that “less is more:” a small 
number of cases carefully studied will be more productive in the long run than an encyclope-
dic treatment (with each topic studied in the depth of a typical encyclopedia article). Really 
learning about methods should come when students try to use them—in courses, in projects, 
and as members of a research community.

Above and beyond core content, I would strongly recommend a program that contains a 
large number of project-based courses, and that has projects similar in kind to the fi rst and 
second year projects discussed above. Research groups are extremely valuable, but if the envi-
ronment does not support them, some of their functions can be achieved through research 
seminars or through modifi cations of the core courses.

This discussion may not seem fully responsive to the issues raised above by Frank Lester, 
in that I do not separate out three different kinds of institutions as he suggests. My fail-
ure to do so is deliberate. Frank is right that at present there are relatively few institutions 
at which students begin conducting research early in their careers. From my perspective, 
that is most unfortunate—even if most students at a particular institution intend to become 
consumers rather than producers of research. One learns a great deal about how research is 
done—about what to believe, what not to believe—by trying to conduct it and learning from 
the experience.

A case in point is the fi rst student whose work was discussed in the section on “project-based 
courses.” Her course project consisted of taking a close look at what people of (ostensibly) dif-
ferent mathematical abilities actually did when they worked mathematics problems. I indicated 
above that by virtue of having conducted the project, the student developed a much more 
nuanced view of problem solving abilities, and of what tests reveal about such competencies.

As it happens, that student did not intend to have a career as a researcher. She was enrolled 
in our teacher preparation program and she went on, as planned, to become a teacher. Her 
presence in the project-based course was no accident. Our teacher preparation program is 
designed so that student teachers and beginning doctoral students are enrolled in many of 
the same courses. Student teachers are also enrolled in faculty’s research groups. The idea is 
that this kind of hands on experience with research will enable them to develop a much better 
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understanding of thinking, teaching, and learning than they would by merely reading about 
it. Even if they never go on to do formal research on their own, they will be much better 
consumers of research, and they will be better at understanding student thinking for having 
explored it in detail. I think all mathematics educators should have such experiences, no mat-
ter what their intended careers.

VIII. A FINAL COMMENT

As one refl ects on the state of the fi eld, it is worth recalling the historical data with which this 
chapter began. Mathematics education began to coalesce as a discipline only a few decades 
ago, with its fi rst professional meetings and journals appearing in the late 1960s and early 
1970s. Its growth since then has been nothing short of phenomenal. Once held tightly in the 
stranglehold of a reductive epistemology and scientistic methods, the fi eld has blossomed. 
Important phenomena as diverse as “metacognition” and “communities of practice” have 
been uncovered and elaborated in substantial detail. Important theoretical frameworks as 
diverse as cognitivism, ethnomethodology, and critical theory (to name just a few) have been 
developed. Methods as diverse as cognitive modeling and discourse analysis have been crafted, 
and approaches for the principled design of educational materials, such as design experiments, 
have been developed. The results have been a broad range of thought-provoking interpreta-
tions of mathematical thinking and learning. During one scholar’s lifetime, the fi eld has pro-
gressed from the point where controlled laboratory studies were necessary to explore simple 
cognitive phenomena to the point where the detailed modeling of thinking and learning in 
complex social environments is possible.

At the same time, the fi eld confronts at least two major diffi culties. First, much of the 
growth has been chaotic. As is absolutely characteristic of young fi elds experiencing rapid 
growth, much of the early work has been revealed to be seriously fl awed. As discussed above, 
unarticulated theoretical biases or unrecognized methodological diffi culties undermined the 
trustworthiness of a good deal of work that seemed perfectly reasonable at the time it was done. 
This should not cause hand wringing—such is the nature of the enterprise—but it should serve 
as a stimulus for devoting seriously increased attention to issues of theory and method. As the 
fi eld matures, it should develop and impose the highest standards for its own conduct.

Second, in the United States at least, there is the serious risk of a return to scientism in the 
name of “science” and under the banner of the “gold standard” of randomized controlled 
trials. I hope to have made clear in this chapter that the use of quantitative methods, while 
apparently more straightforward than the use of qualitative methods, is in fact every bit as 
complex—and every bit as liable to misinterpretation. The challenge, no matter what kind of 
method is being used, is to use it properly—to gather evidence that provides solid warrants for 
the claims being made. My hope is that the framework discussed in Section VI and the criteria 
discussed in Section V will prove useful tools along these lines.

NOTES

 1. These are problems stated in forms such as 

     S E N D   D O N A L D
    + M O R E or + G E R A L D    __________________  _________________________
   = M O N E Y    = R O B E R T.

  A solution to a problem consists of replacing each letter in the given form with a unique digit from 
0 to 9 so that when all the replacements are made, the arithmetic sum that results is correct.

 2. Vygotsky died in 1934, so the roots of this work extend quite deeply. The 1962 and 1978 dates of 
publication of Thought and Language and Mind in Society represent the appearance of his work in 
English translation.
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 3. The discussion of issues 1 and 2 in this section is a brief reprise of an argument made in Schoenfeld 
(1999b); see that paper for more extensive detail. The discussion of issue 3 is taken, with slight 
modifi cations, from Schoenfeld (1999a).

 4. A caveat: the claim is that a signifi cant proportion of educational research can (and when possible, 
should) be carried out in “real” contexts. However, at different points in the development of a fi eld, 
it may be diffi cult for any one corpus of work to contribute simultaneously to both theory and 
practice. Sometimes the state of theory is such that it may best be nurtured, temporarily, aside from 
signifi cant considerations of use (consider the origins of cognitive science, which was nurtured in 
laboratory studies). Sometimes the need to solve practical problems seems so urgent that theoretical 
considerations may be given secondary status (consider the post-Sputnik period, during which engi-
neering efforts such as “putting a man on the moon” took priority). Figure 19.3 should be taken as 
a heuristic guide, with the upper right-hand quadrant representing a desirable site for work, when 
possible.

 5. What follows is complex, but perhaps not complex enough. In Figure 19.5 each of the boxes is static 
and each of the arrows is unidirectional. In reality, of course, the process of data interpretation is 
dynamic: conceptual models and representational systems evolve as one comes to a better under-
standing of the relevant phenomena, and the process is dialectic rather than linear. Readers who 
wish to wallow in the complexities of the research process, among other things, may wish to explore 
Latour (1988, 1999).

 6. This discussion is expanded from Schoenfeld (2000).
 7. This example points to another important criterion, simplicity. When a theory requires multiple 

“fi xes” such as epicycles upon epicycles, that is a symptom that something is not right.
 8. “Folk wisdom” is a case in point. Everything can be explained (at least post hoc) by folk wisdom. 

Depending on circumstances, for example, you can invoke the maxim “haste makes waste” to say 
that things must be done slowly and carefully, or “a stitch in time saves nine” to say that being 
speedy is essential. A “theory” that explains everything explains nothing.

 9. I understand that this appears to be a strongly Popper-like (1963) stance, and that alternative 
stances such as those taken by Toulmin (1958) or Pickering (1995) are more contextual in char-
acter. While acknowledging the necessity for context-based theories, I think that one can look for 
aspects of falsifi ability (even in particular contexts or in rough equivalence classes of them) without 
being committed to a fully Popper-like stance. See the discussion of replicability in the following 
section. 

 10. It is possible to perform calculation such as 384 × 673 mentally by rehearsing the subtotals. For 
example, one can calculate 3 × 384 = 1152 and repeat “1152” mentally until it becomes a “chunk” 
which only occupies one short-term memory buffer. “Chunking” is a well-documented mechanism 
by which people can perform mental tasks.

 11. The hypothetical limit of the number of short-term memory buffers would be of little interest if it 
applied only to tasks such as multiplication. Miller’s fi nding, however, has great scope: there is a 
wide range of tasks, from very many domains, on which people begin to falter badly when the num-
ber of things they have to “keep in mind” approaches seven.

 12. In simplest terms, one group of students used what is called the “count all” strategy for addition, 
while the second group had developed the “counting on” strategy.

 13. These categories are not crisply defi ned, of course; the character of the event is a function of the 
perspective of the researcher. For example: from the perspective of teacher-researchers involved in 
implementing a new curriculum, their work is an attempt at change. From the perspective of anthro-
pologists examining the “cultures” of their classrooms, the observations may be “descriptions of the 
reality of a school in fl ux.” Both perspectives on the same set of events are possible. 

 14. This is not a hypothetical issue. In my book Mathematical Problem Solving (Schoenfeld, 1985), I 
describe a scheme for analyzing transcripts of problem solving sessions that focuses on “make or 
break” decisions during problem solving. Following the book’s publication, I received a substantial 
number of communications from colleagues who said the scheme had not helped them analyze 
transcripts of students solving “problems” such as fi nding the product of two three-digit numbers. 
It should have been no surprise that strategic decisions are few and far between when one is working 
on problems that are purely procedural.

 15. The discussion that follows is distilled from the concluding sections of Schoenfeld, 1999b.
 16. The statement reveals a personal bias, that “problem-driven” research (rather than “method-driven” 

research and to some degree, “theory-driven research”) is the most profi table way for the fi eld to 
progress at present. When theory is stable and methods are well established, fi elds can progress by 
“working out the details”—using a standard set of methods to obtain results. When theories and 
methods are unstable, however, a profi table strategy is often to select problems that are of theoreti-
cal and pragmatic interest (recall Pasteur’s quadrant), and that have the potential to be solvable. 
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Working out the solutions, often through adaptations of known methods, can contribute to the 
development of theory while expanding the community’s methodological tool kit.
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